
ProDy Documentation
Release 1.10.5

Ahmet Bakan

May 18, 2018

Contents

1 Installation 1

2 Applications 4

3 Reference Manual 33

4 Developer’s Guide 36

5 Release Notes 51

6 About ProDy 93

Bibliography 98

Python Module Index 99

i

CHAPTER 1

Installation

1.1 Required Software

• Python1 2.7, 3.5 or later

• NumPy2 1.10 or later

When compiling from source, on Linux for example, you will need a C compiler (e.g. gcc) and Python de-
veloper libraries (i.e. python.h). If you don’t have Python developer libraries installed on your machine,
use your package manager to install python-dev package.

In addition, matplotlib3 is required for using plotting functions. ProDy, ProDy Applications (page 4), and
Evol Applications (page 18) can be operated without this package.

1.2 Quick Install

If you have pip4 installed, type the following:

pip install -U ProDy

If you don’t have pip5, please download an installation file and follow the instructions.

1.3 Download & Install

After installing the required packages, you will need to download a suitable ProDy source or installation
file from http://python.org/pypi/ProDy. For changes and list of new features see Release Notes (page 51).

1 http://www.python.org
2 http://www.numpy.org
3 http://matplotlib.org
4 https://pypi.python.org/pypi/pip
5 https://pypi.python.org/pypi/pip

1

http://www.python.org
http://www.numpy.org
http://matplotlib.org
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
http://python.org/pypi/ProDy

ProDy Documentation, Release 1.10.5

Linux

Download ProDy-x.y.z.tar.gz. Extract tarball contents and run setup.py as follows:

$ tar -xzf ProDy-x.y.z.tar.gz
$ cd ProDy-x.y.z
$ python setup.py build
$ python setup.py install

If you need root access for installation, try sudo python setup.py install. If you don’t have root
access, please consult alternate and custom installation schemes in Installing Python Modules6.

Mac OS

For installing ProDy, please follow the Linux installation instructions.

Windows

Remove previously installed ProDy release from Uninstall a program in Control Panel.

Download ProDy-1.x.y.win32-py2.z.exe and run to install ProDy.

To be able use ProDy Applications (page 4) and Evol Applications (page 18) in command prompt (cmd.exe),
append Python and scripts folders (e.g. C:\Python27 and C:\Python27\Scripts) to PATH7 environ-
ment variable.

1.4 Recommended Software

• Scipy8, when installed, replaces linear algebra module of Numpy. Scipy linear algebra module is more
flexible and can be faster.

• IPython9 is a must have for interactive ProDy sessions.

• PyReadline10 for colorful IPython sessions on Windows.

• MDAnalysis11 for reading molecular dynamics trajectories.

1.5 Included in ProDy

Following software is included in the ProDy installation packages:

• pyparsing12 is used to define the atom selection grammar.

• Biopython13 KDTree package and pairwise2 module are used for distance based atom selections and
pairwise sequence alignment, respectively.

• argparse14 is used to implement applications and provided for compatibility with Python 2.6.

6 http://docs.python.org/install/index.html
7 https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH
8 http://www.scipy.org
9 http://ipython.org

10 http://ipython.org/pyreadline.html
11 http://code.google.com/p/mdanalysis
12 http://pyparsing.wikispaces.com
13 http://biopython.org
14 http://code.google.com/p/argparse/

1.4. Recommended Software 2

http://docs.python.org/install/index.html
https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH
http://www.scipy.org
http://ipython.org
http://ipython.org/pyreadline.html
http://code.google.com/p/mdanalysis
http://pyparsing.wikispaces.com
http://biopython.org
http://code.google.com/p/argparse/

ProDy Documentation, Release 1.10.5

1.6 Source Code

Source code is available at https://github.com/prody/ProDy.

1.6. Source Code 3

https://github.com/prody/ProDy

CHAPTER 2

Applications

ProDy comes with two sets of applications that automate structural dynamics and sequence coevolution
analysis:

2.1 ProDy Applications

ProDy applications are command line programs that automates structure processing and structural dynam-
ics analysis:

2.1.1 prody align

Usage

Running prody align -h displays:

usage: prody align [-h] [--quiet] [--examples] [-s SEL] [-m INT] [-i INT]
[-o INT] [-p STR] [-x STR]
pdb [pdb ...]

positional arguments:
pdb PDB identifier(s) or filename(s)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

atom/model selection:
-s SEL, --select SEL reference structure atom selection (default: calpha)
-m INT, --model INT for NMR files, reference model index (default: 1)

(continues on next page)

4

ProDy Documentation, Release 1.10.5

(continued from previous page)

chain matching options:
-i INT, --seqid INT percent sequence identity (default: 90)
-o INT, --overlap INT

percent sequence overlap (default: 90)

output options:
-p STR, --prefix STR output filename prefix (default: PDB filename)
-x STR, --suffix STR output filename suffix (default: _aligned)

Examples

Running prody align --examples displays:

Align models in a PDB structure or multiple PDB structures and save
aligned coordinate sets. When multiple structures are aligned, ProDy
will match chains based on sequence alignment and use best match for
aligning the structures.

Fetch PDB structure 2k39 and align models (reference model is the
first model):

$ prody align 2k39

Fetch PDB structure 2k39 and align models using backbone of residues
with number less than 71:

$ prody align 2k39 --select "backbone and resnum < 71"

Align 1r39 and 1zz2 onto 1p38 using residues with number less than
300:

$ prody align --select "resnum < 300" 1p38 1r39 1zz2

Align all models of 2k39 onto 1aar using residues 1 to 70 (inclusive):

$ prody align --select "resnum 1 to 70" 1aar 2k39

Align 1fi7 onto 1hrc using heme atoms:

$ prody align --select "noh heme and chain A" 1hrc 1fi7

2.1.2 prody anm

Usage

Running prody anm -h displays:

usage: prody anm [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-c FLOAT]
[-g FLOAT] [-m INT] [-a] [-o PATH] [-e] [-r] [-u] [-q] [-v]
[-z] [-t STR] [-b] [-l] [-k] [-p STR] [-f STR] [-d STR]
[-x STR] [-A] [-R] [-Q] [-B] [-K] [-F STR] [-D INT]
[-W FLOAT] [-H FLOAT]
pdb

(continues on next page)

2.1. ProDy Applications 5

ProDy Documentation, Release 1.10.5

(continued from previous page)

positional arguments:
pdb PDB identifier or filename

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

parameters:
-n INT, --number-of-modes INT

number of non-zero eigenvectors (modes) to calculate
(default: 10)

-s SEL, --select SEL atom selection (default: "protein and name CA or
nucleic and name P C4' C2")

-c FLOAT, --cutoff FLOAT
cutoff distance (A) (default: 15.0)

-g FLOAT, --gamma FLOAT
spring constant (default: 1.0)

-m INT, --model INT index of model that will be used in the calculations

output:
-a, --all-output write all outputs
-o PATH, --output-dir PATH

output directory (default: .)
-e, --eigenvs write eigenvalues/vectors
-r, --cross-correlations

write cross-correlations
-u, --heatmap write cross-correlations heatmap file
-q, --square-fluctuations

write square-fluctuations
-v, --covariance write covariance matrix
-z, --npz write compressed ProDy data file
-t STR, --extend STR write NMD file for the model extended to "backbone"

("bb") or "all" atoms of the residue, model must have
one node per residue

-b, --beta-factors write beta-factors calculated from GNM modes
-l, --hessian write Hessian matrix
-k, --kirchhoff write Kirchhoff matrix

output options:
-p STR, --file-prefix STR

output file prefix (default: pdb_anm)
-f STR, --number-format STR

number output format (default: %12g)
-d STR, --delimiter STR

number delimiter (default: " ")
-x STR, --extension STR

numeric file extension (default: .txt)

figures:
-A, --all-figures save all figures
-R, --cross-correlations-figure

save cross-correlations figure
-Q, --square-fluctuations-figure

save square-fluctuations figure

(continues on next page)

2.1. ProDy Applications 6

ProDy Documentation, Release 1.10.5

(continued from previous page)

-B, --beta-factors-figure
save beta-factors figure

-K, --contact-map save contact map (Kirchhoff matrix) figure

figure options:
-F STR, --figure-format STR

pdf (default: pdf)
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8.0)
-H FLOAT, --height FLOAT

figure height (inch) (default: 6.0)

Examples

Running prody anm --examples displays:

Perform ANM calculations for given PDB structure and output results in
NMD format. If an identifier is passed, structure file will be
downloaded from the PDB FTP server.

Fetch PDB 1p38, run ANM calculations using default parameters, and
write NMD file:

$ prody anm 1p38

Fetch PDB 1aar, run ANM calculations using default parameters for
chain A carbon alpha atoms with residue numbers less than 70, and save
all of the graphical output files:

$ prody anm 1aar -s "calpha and chain A and resnum < 70" -A

2.1.3 prody biomol

Usage

Running prody biomol -h displays:

usage: prody biomol [-h] [--quiet] [--examples] [-p STR] [-b INT] pdb

positional arguments:
pdb PDB identifier or filename

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
-p STR, --prefix STR prefix for output files (default: pdb_biomol_)
-b INT, --biomol INT index of the biomolecule, by default all are generated

2.1. ProDy Applications 7

ProDy Documentation, Release 1.10.5

Examples

Running prody biomol --examples displays:

Generate biomolecule coordinates:

$ prody biomol 2bfu

2.1.4 prody blast

Usage

Running prody blast -h displays:

usage: prody blast [-h] [--quiet] [--examples] [-i FLOAT] [-o FLOAT] [-d PATH]
[-z] [-f STR] [-e FLOAT] [-l INT] [-s INT] [-t INT]
sequence

positional arguments:
sequence sequence or file in fasta format

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
-i FLOAT, --identity FLOAT

percent sequence identity (default: 90.0)
-o FLOAT, --overlap FLOAT

percent sequence overlap (default: 90.0)
-d PATH, --output-dir PATH

download uncompressed PDB files to given directory
-z, --gzip write compressed PDB file

Blast Parameters:
-f STR, --filename STR

a filename to save the results in XML format
-e FLOAT, --expect FLOAT

blast search parameter
-l INT, --hit-list-size INT

blast search parameter
-s INT, --sleep-time INT

how long to wait to reconnect for results (sleep time
is doubled when results are not ready)

-t INT, --timeout INT
when to give up waiting for results

Examples

Running prody blast --examples displays:

Blast search PDB for the first sequence in a fasta file:

$ prody blast seq.fasta -i 70

(continues on next page)

2.1. ProDy Applications 8

ProDy Documentation, Release 1.10.5

(continued from previous page)

Blast search PDB for the sequence argument:

$ prody blast
→˓MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

Blast search PDB for avidin structures, download files, and align all
files onto the 2avi structure:

$ prody blast -d .
→˓ARKCSLTGKWTNDLGSNMTIGAVNSRGEFTGTYITAVTATSNEIKESPLHGTQNTINKRTQPTFGFTVNWKFSESTTVFT

$ prody align 2avi.pdb *pdb

2.1.5 prody catdcd

Usage

Running prody catdcd -h displays:

usage: prody catdcd [-h] [--quiet] [--examples] [-s SEL] [-o FILE] [-n]
[--psf PSF] [--pdb PDB] [--first INT] [--last INT]
[--stride INT] [--align SEL]
dcd [dcd ...]

positional arguments:
dcd DCD filename(s) (all must have same number of atoms)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
-s SEL, --select SEL atom selection (default: all)
-o FILE, --output FILE

output filename (default: trajectory.dcd)
-n, --num print the number of frames in each file and exit
--psf PSF PSF filename (must have same number of atoms as DCDs)
--pdb PDB PDB filename (must have same number of atoms as DCDs)
--first INT index of the first output frame, default: 0
--last INT index of the last output frame, default: -1
--stride INT number of steps between output frames, default: 1
--align SEL atom selection for aligning frames, a PSF or PDB file

must be provided, if a PDB is provided frames will be
superposed onto PDB coordinates

Examples

Running prody catdcd --examples displays:

Concatenate two DCD files and output all atmos:

$ prody catdcd mdm2.dcd mdm2sim2.dcd

Concatenate two DCD files and output backbone atoms:

(continues on next page)

2.1. ProDy Applications 9

ProDy Documentation, Release 1.10.5

(continued from previous page)

$ prody catdcd mdm2.dcd mdm2sim2.dcd --pdb mdm2.pdb -s bb

2.1.6 prody contacts

Usage

Running prody contacts -h displays:

usage: prody contacts [-h] [--quiet] [--examples] [-s SELSTR] [-r FLOAT]
[-t STR] [-p STR] [-x STR]
target ligand [ligand ...]

positional arguments:
target target PDB identifier or filename
ligand ligand PDB identifier(s) or filename(s)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
-s SELSTR, --select SELSTR

selection string for target
-r FLOAT, --radius FLOAT

contact radius (default: 4.0)
-t STR, --extend STR output same residue, chain, or segment as contacting

atoms
-p STR, --prefix STR output filename prefix (default: target filename)
-x STR, --suffix STR output filename suffix (default: _contacts)

Examples

Running prody contacts --examples displays:

Identify contacts of a target structure with one or more ligands.

Fetch PDB structure 1zz2, save PDB files for individual ligands, and
identify contacting residues of the target protein:

$ prody select -o B11 "resname B11" 1zz2

$ prody select -o BOG "resname BOG" 1zz2

$ prody contacts -r 4.0 -t residue -s protein 1zz2 B11.pdb BOG.pdb

2.1.7 prody eda

Usage

Running prody eda -h displays:

2.1. ProDy Applications 10

ProDy Documentation, Release 1.10.5

usage: prody eda [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-a] [-o PATH]
[-e] [-r] [-u] [-q] [-v] [-z] [-t STR] [-j] [-p STR] [-f STR]
[-d STR] [-x STR] [-A] [-R] [-Q] [-J STR] [-F STR] [-D INT]
[-W FLOAT] [-H FLOAT] [--psf PSF | --pdb PDB] [--aligned]
dcd

positional arguments:
dcd file in DCD or PDB format

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
--psf PSF PSF filename
--pdb PDB PDB filename
--aligned trajectory is already aligned

parameters:
-n INT, --number-of-modes INT

number of non-zero eigenvectors (modes) to calculate
(default: 10)

-s SEL, --select SEL atom selection (default: "protein and name CA or
nucleic and name P C4' C2")

output:
-a, --all-output write all outputs
-o PATH, --output-dir PATH

output directory (default: .)
-e, --eigenvs write eigenvalues/vectors
-r, --cross-correlations

write cross-correlations
-u, --heatmap write cross-correlations heatmap file
-q, --square-fluctuations

write square-fluctuations
-v, --covariance write covariance matrix
-z, --npz write compressed ProDy data file
-t STR, --extend STR write NMD file for the model extended to "backbone"

("bb") or "all" atoms of the residue, model must have
one node per residue

-j, --projection write projections onto PCs

output options:
-p STR, --file-prefix STR

output file prefix (default: pdb_pca)
-f STR, --number-format STR

number output format (default: %12g)
-d STR, --delimiter STR

number delimiter (default: " ")
-x STR, --extension STR

numeric file extension (default: .txt)

figures:
-A, --all-figures save all figures
-R, --cross-correlations-figure

save cross-correlations figure
-Q, --square-fluctuations-figure

save square-fluctuations figure

(continues on next page)

2.1. ProDy Applications 11

ProDy Documentation, Release 1.10.5

(continued from previous page)

-J STR, --projection-figure STR
save projections onto specified subspaces, e.g. "1,2"
for projections onto PCs 1 and 2; "1,2 1,3" for
projections onto PCs 1,2 and 1, 3; "1 1,2,3" for
projections onto PCs 1 and 1, 2, 3

figure options:
-F STR, --figure-format STR

pdf (default: pdf)
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8.0)
-H FLOAT, --height FLOAT

figure height (inch) (default: 6.0)

Examples

Running prody eda --examples displays:

This command performs PCA (or EDA) calculations for given multi-model
PDB structure or DCD format trajectory file and outputs results in NMD
format. If a PDB identifier is given, structure file will be
downloaded from the PDB FTP server. DCD files may be accompanied with
PDB or PSF files to enable atoms selections.

Fetch pdb 2k39, perform PCA calculations, and output NMD file:

$ prody pca 2k39

Fetch pdb 2k39 and perform calculations for backbone of residues up to
71, and save all output and figure files:

$ prody pca 2k39 --select "backbone and resnum < 71" -a -A

Perform EDA of MDM2 trajectory:

$ prody eda mdm2.dcd

Perform EDA for backbone atoms:

$ prody eda mdm2.dcd --pdb mdm2.pdb --select backbone

2.1.8 prody fetch

Usage

Running prody fetch -h displays:

usage: prody fetch [-h] [--quiet] [--examples] [-d PATH] [-z] pdb [pdb ...]

positional arguments:
pdb PDB identifier(s) or a file that contains them

(continues on next page)

2.1. ProDy Applications 12

ProDy Documentation, Release 1.10.5

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
-d PATH, --dir PATH target directory for saving PDB file(s)
-z, --gzip write compressed PDB file(S)

Examples

Running prody fetch --examples displays:

Download PDB file(s) by specifying identifiers:

$ prody fetch 1mkp 1p38

2.1.9 prody gnm

Usage

Running prody gnm -h displays:

usage: prody gnm [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-c FLOAT]
[-g FLOAT] [-m INT] [-a] [-o PATH] [-e] [-r] [-u] [-q] [-v]
[-z] [-t STR] [-b] [-k] [-p STR] [-f STR] [-d STR] [-x STR]
[-A] [-R] [-Q] [-B] [-K] [-M STR] [-F STR] [-D INT]
[-W FLOAT] [-H FLOAT]
pdb

positional arguments:
pdb PDB identifier or filename

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

parameters:
-n INT, --number-of-modes INT

number of non-zero eigenvectors (modes) to calculate
(default: 10)

-s SEL, --select SEL atom selection (default: "protein and name CA or
nucleic and name P C4' C2")

-c FLOAT, --cutoff FLOAT
cutoff distance (A) (default: 10.0)

-g FLOAT, --gamma FLOAT
spring constant (default: 1.0)

-m INT, --model INT index of model that will be used in the calculations

output:
-a, --all-output write all outputs
-o PATH, --output-dir PATH

output directory (default: .)
-e, --eigenvs write eigenvalues/vectors

(continues on next page)

2.1. ProDy Applications 13

ProDy Documentation, Release 1.10.5

(continued from previous page)

-r, --cross-correlations
write cross-correlations

-u, --heatmap write cross-correlations heatmap file
-q, --square-fluctuations

write square-fluctuations
-v, --covariance write covariance matrix
-z, --npz write compressed ProDy data file
-t STR, --extend STR write NMD file for the model extended to "backbone"

("bb") or "all" atoms of the residue, model must have
one node per residue

-b, --beta-factors write beta-factors calculated from GNM modes
-k, --kirchhoff write Kirchhoff matrix

output options:
-p STR, --file-prefix STR

output file prefix (default: pdb_gnm)
-f STR, --number-format STR

number output format (default: %12g)
-d STR, --delimiter STR

number delimiter (default: " ")
-x STR, --extension STR

numeric file extension (default: .txt)

figures:
-A, --all-figures save all figures
-R, --cross-correlations-figure

save cross-correlations figure
-Q, --square-fluctuations-figure

save square-fluctuations figure
-B, --beta-factors-figure

save beta-factors figure
-K, --contact-map save contact map (Kirchhoff matrix) figure
-M STR, --mode-shape-figure STR

save mode shape figures for specified modes, e.g. "1-3
5" for modes 1, 2, 3 and 5

figure options:
-F STR, --figure-format STR

pdf (default: pdf)
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8.0)
-H FLOAT, --height FLOAT

figure height (inch) (default: 6.0)

Examples

Running prody gnm --examples displays:

This command performs GNM calculations for given PDB structure and
outputs results in NMD format. If an identifier is passed, structure
file will be downloaded from the PDB FTP server.

Fetch PDB 1p38, run GNM calculations using default parameters, and
results:

(continues on next page)

2.1. ProDy Applications 14

ProDy Documentation, Release 1.10.5

(continued from previous page)

$ prody gnm 1p38

Fetch PDB 1aar, run GNM calculations with cutoff distance 7 angstrom
for chain A carbon alpha atoms with residue numbers less than 70, and
save all of the graphical output files:

$ prody gnm 1aar -c 7 -s "calpha and chain A and resnum < 70" -A

2.1.10 prody pca

Usage

Running prody pca -h displays:

usage: prody pca [-h] [--quiet] [--examples] [-n INT] [-s SEL] [-a] [-o PATH]
[-e] [-r] [-u] [-q] [-v] [-z] [-t STR] [-j] [-p STR] [-f STR]
[-d STR] [-x STR] [-A] [-R] [-Q] [-J STR] [-F STR] [-D INT]
[-W FLOAT] [-H FLOAT] [--psf PSF | --pdb PDB] [--aligned]
dcd

positional arguments:
dcd file in DCD or PDB format

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit
--psf PSF PSF filename
--pdb PDB PDB filename
--aligned trajectory is already aligned

parameters:
-n INT, --number-of-modes INT

number of non-zero eigenvectors (modes) to calculate
(default: 10)

-s SEL, --select SEL atom selection (default: "protein and name CA or
nucleic and name P C4' C2")

output:
-a, --all-output write all outputs
-o PATH, --output-dir PATH

output directory (default: .)
-e, --eigenvs write eigenvalues/vectors
-r, --cross-correlations

write cross-correlations
-u, --heatmap write cross-correlations heatmap file
-q, --square-fluctuations

write square-fluctuations
-v, --covariance write covariance matrix
-z, --npz write compressed ProDy data file
-t STR, --extend STR write NMD file for the model extended to "backbone"

("bb") or "all" atoms of the residue, model must have
one node per residue

(continues on next page)

2.1. ProDy Applications 15

ProDy Documentation, Release 1.10.5

(continued from previous page)

-j, --projection write projections onto PCs

output options:
-p STR, --file-prefix STR

output file prefix (default: pdb_pca)
-f STR, --number-format STR

number output format (default: %12g)
-d STR, --delimiter STR

number delimiter (default: " ")
-x STR, --extension STR

numeric file extension (default: .txt)

figures:
-A, --all-figures save all figures
-R, --cross-correlations-figure

save cross-correlations figure
-Q, --square-fluctuations-figure

save square-fluctuations figure
-J STR, --projection-figure STR

save projections onto specified subspaces, e.g. "1,2"
for projections onto PCs 1 and 2; "1,2 1,3" for
projections onto PCs 1,2 and 1, 3; "1 1,2,3" for
projections onto PCs 1 and 1, 2, 3

figure options:
-F STR, --figure-format STR

pdf (default: pdf)
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8.0)
-H FLOAT, --height FLOAT

figure height (inch) (default: 6.0)

Examples

Running prody pca --examples displays:

This command performs PCA (or EDA) calculations for given multi-model
PDB structure or DCD format trajectory file and outputs results in NMD
format. If a PDB identifier is given, structure file will be
downloaded from the PDB FTP server. DCD files may be accompanied with
PDB or PSF files to enable atoms selections.

Fetch pdb 2k39, perform PCA calculations, and output NMD file:

$ prody pca 2k39

Fetch pdb 2k39 and perform calculations for backbone of residues up to
71, and save all output and figure files:

$ prody pca 2k39 --select "backbone and resnum < 71" -a -A

Perform EDA of MDM2 trajectory:

$ prody eda mdm2.dcd

(continues on next page)

2.1. ProDy Applications 16

ProDy Documentation, Release 1.10.5

(continued from previous page)

Perform EDA for backbone atoms:

$ prody eda mdm2.dcd --pdb mdm2.pdb --select backbone

2.1.11 prody select

Usage

Running prody select -h displays:

usage: prody select [-h] [--quiet] [--examples] [-o STR] [-p STR] [-x STR]
select pdb [pdb ...]

positional arguments:
select atom selection string
pdb PDB identifier(s) or filename(s)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

output options:
-o STR, --output STR output PDB filename (default: pdb_selected.pdb)
-p STR, --prefix STR output filename prefix (default: PDB filename)
-x STR, --suffix STR output filename suffix (default: _selected)

Examples

Running prody select --examples displays:

This command selects specified atoms and writes them in a PDB file.

Fetch PDB files 1p38 and 1r39 and write backbone atoms in a file:

$ prody select backbone 1p38 1r39

Running prody command will provide a description of applications:

$ prody

usage: prody [-h] [-c] [-v]
{anm,gnm,pca,eda,align,blast,biomol,catdcd,contacts,fetch,select}
...

ProDy: A Python Package for Protein Dynamics Analysis

optional arguments:
-h, --help show this help message and exit
-c, --cite print citation info and exit
-v, --version print ProDy version and exit

(continues on next page)

2.1. ProDy Applications 17

ProDy Documentation, Release 1.10.5

(continued from previous page)

subcommands:
{anm,gnm,pca,eda,align,blast,biomol,catdcd,contacts,fetch,select}
anm perform anisotropic network model calculations
gnm perform Gaussian network model calculations
pca perform principal component analysis calculations
eda perform essential dynamics analysis calculations
align align models or structures
blast blast search Protein Data Bank
biomol build biomolecules
catdcd concatenate dcd files
contacts identify contacts between a target and ligand(s)
fetch fetch a PDB file
select select atoms and write a PDB file

See 'prody <command> -h' for more information on a specific command.

Detailed information on a specific application can be obtained by typing the command and application
names as prody anm -h.

Running prody anm application as follows will perform ANM calculations for the p38 MAP kinase struc-
ture, and will write eigenvalues/vectors in plain text and NMD Format15:

$ prody anm 1p38

In the above example, the default parameters (cutoff=15. and gamma=1.) and all of the C𝛼 atoms of the
protein structure 1p38 are used.

In the example below, the cutoff distance is changed to 14 Å, and the C𝛼 atoms of residues with numbers
smaller than 340 are used, the output files are prefixed with p38_anm:

$ prody anm -c 14 -s "calpha resnum < 340" -p p38_anm 1p38

The output file p38_anm.nmd can be visualized using ‘NMWiz‘_.

2.2 Evol Applications

Evol applications are command line programs that automate retrieval, refinement, and analysis of multiple
sequence alignments:

2.2.1 evol coevol

Usage

Running evol coevol -h displays:

usage: evol coevol [-h] [--quiet] [--examples] [-n] [-c STR] [-m STR] [-t]
[-p STR] [-f STR] [-S] [-L FLOAT] [-U FLOAT] [-X STR]
[-T STR] [-D INT] [-H FLOAT] [-W FLOAT] [-F STR]
msa

(continues on next page)

15 http://prody.csb.pitt.edu/manual/reference/dynamics/nmdfile.html#nmd-format

2.2. Evol Applications 18

http://prody.csb.pitt.edu/manual/reference/dynamics/nmdfile.html#nmd-format

ProDy Documentation, Release 1.10.5

(continued from previous page)

positional arguments:
msa refined MSA file

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

calculation options:
-n, --no-ambiguity treat amino acids characters B, Z, J, and X as non-

ambiguous
-c STR, --correction STR

also save corrected mutual information matrix data and
plot, one of apc, asc

-m STR, --normalization STR
also save normalized mutual information matrix data
and plot, one of sument, minent, maxent, mincon,
maxcon, joint

output options:
-t, --heatmap save heatmap files for all mutual information matrices
-p STR, --prefix STR output filename prefix, default is msa filename with

_coevol suffix
-f STR, --number-format STR

number output format (default: %12g)

figure options:
-S, --save-plot save coevolution plot
-L FLOAT, --cmin FLOAT

apply lower limits for figure plot
-U FLOAT, --cmax FLOAT

apply upper limits for figure plot
-X STR, --xlabel STR specify xlabel, by default will be applied on ylabel
-T STR, --title STR figure title
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-H FLOAT, --height FLOAT

figure height (inch) (default: 6)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8)
-F STR, --figure-format STR

figure file format, one of svgz, rgba, png, pdf, eps,
svg, ps, raw (default: pdf)

Examples

Running evol coevol --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

(continues on next page)

2.2. Evol Applications 19

ProDy Documentation, Release 1.10.5

(continued from previous page)

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.2 evol conserv

Usage

Running evol conserv -h displays:

usage: evol conserv [-h] [--quiet] [--examples] [-n] [-g] [-p STR] [-f STR]
[-S] [-H FLOAT] [-W FLOAT] [-F STR] [-D INT]
msa

positional arguments:
msa refined MSA file

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

calculation options:
-n, --no-ambiguity treat amino acids characters B, Z, J, and X as non-

ambiguous
-g, --gaps do not omit gap characters

output options:
-p STR, --prefix STR output filename prefix, default is msa filename with

_conserv suffix
-f STR, --number-format STR

number output format (default: %12g)

(continues on next page)

2.2. Evol Applications 20

ProDy Documentation, Release 1.10.5

(continued from previous page)

figure options:
-S, --save-plot save conservation plot
-H FLOAT, --height FLOAT

figure height (inch) (default: 6)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8)
-F STR, --figure-format STR

figure file format, one of raw, png, ps, svgz, eps,
pdf, rgba, svg (default: pdf)

-D INT, --dpi INT figure resolution (dpi) (default: 300)

Examples

Running evol conserv --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.3 evol fetch

Usage

Running evol fetch -h displays:

2.2. Evol Applications 21

ProDy Documentation, Release 1.10.5

usage: evol fetch [-h] [--quiet] [--examples] [-a STR] [-f STR] [-o STR]
[-i STR] [-g STR] [-t INT] [-d PATH] [-p STR] [-z]
acc

positional arguments:
acc Pfam accession or ID

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

download options:
-a STR, --alignment STR

alignment type, one of full, seed, ncbi, metagenomics
(default: full)

-f STR, --format STR Pfam supported MSA format, one of selex, fasta,
stockholm (default: selex)

-o STR, --order STR ordering of sequences, one of tree, alphabetical
(default: tree)

-i STR, --inserts STR
letter case for inserts, one of upper, lower (default:
upper)

-g STR, --gaps STR gap character, one of dashes, dots, mixed (default:
dashes)

-t INT, --timeout INT
timeout for blocking connection attempts (default: 60)

output options:
-d PATH, --outdir PATH

output directory (default: .)
-p STR, --outname STR

output filename, default is accession and alignment
type

-z, --compressed gzip downloaded MSA file

Examples

Running evol fetch --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

(continues on next page)

2.2. Evol Applications 22

ProDy Documentation, Release 1.10.5

(continued from previous page)

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.4 evol filter

Usage

Running evol filter -h displays:

usage: evol filter [-h] [--quiet] [--examples] (-s | -e | -c) [-F] [-o STR]
[-f STR] [-z]
msa word [word ...]

positional arguments:
msa MSA filename to be filtered
word word to be compared to sequence label

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

filtering method (required):
-s, --startswith sequence label starts with given words
-e, --endswith sequence label ends with given words
-c, --contains sequence label contains with given words

filter option:
-F, --full-label compare full label with word(s)

output options:
-o STR, --outname STR

output filename, default is msa filename with _refined
suffix

-f STR, --format STR output MSA file format, default is same as input
-z, --compressed gzip refined MSA output

Examples

Running evol filter --examples displays:

2.2. Evol Applications 23

ProDy Documentation, Release 1.10.5

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.5 evol merge

Usage

Running evol merge -h displays:

usage: evol merge [-h] [--quiet] [--examples] [-o STR] [-f STR] [-z]
msa [msa ...]

positional arguments:
msa MSA filenames to be merged

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

output options:
-o STR, --outname STR

output filename, default is first input filename with
_merged suffix

-f STR, --format STR output MSA file format, default is same as first input

(continues on next page)

2.2. Evol Applications 24

ProDy Documentation, Release 1.10.5

(continued from previous page)

MSA
-z, --compressed gzip merged MSA output

Examples

Running evol merge --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.6 evol occupancy

Usage

Running evol occupancy -h displays:

usage: evol occupancy [-h] [--quiet] [--examples] [-o STR] [-p STR] [-l STR]
[-f STR] [-S] [-X STR] [-Y STR] [-T STR] [-D INT]
[-W FLOAT] [-F STR] [-H FLOAT]
msa

positional arguments:
msa MSA file

(continues on next page)

2.2. Evol Applications 25

ProDy Documentation, Release 1.10.5

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

calculation options:
-o STR, --occ-axis STR

calculate row or column occupancy or both., one of
row, col, both (default: row)

output options:
-p STR, --prefix STR output filename prefix, default is msa filename with

_occupancy suffix
-l STR, --label STR index for column based on msa label
-f STR, --number-format STR

number output format (default: %12g)

figure options:
-S, --save-plot save occupancy plot/s
-X STR, --xlabel STR specify xlabel
-Y STR, --ylabel STR specify ylabel
-T STR, --title STR figure title
-D INT, --dpi INT figure resolution (dpi) (default: 300)
-W FLOAT, --width FLOAT

figure width (inch) (default: 8)
-F STR, --figure-format STR

figure file format, one of png, pdf, raw, svg, eps,
ps, svgz, rgba (default: pdf)

-H FLOAT, --height FLOAT
figure height (inch) (default: 6)

Examples

Running evol occupancy --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

(continues on next page)

2.2. Evol Applications 26

ProDy Documentation, Release 1.10.5

(continued from previous page)

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.7 evol rankorder

Usage

Running evol rankorder -h displays:

usage: evol rankorder [-h] [--quiet] [--examples] [-z] [-d STR] [-p STR]
[-m STR] [-l STR] [-n INT] [-q INT] [-t FLOAT] [-u]
[-o STR]
mutinfo

positional arguments:
mutinfo mutual information matrix

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

input options:
-z, --zscore apply zscore for identifying top ranked coevolving

pairs
-d STR, --delimiter STR

delimiter used in mutual information matrix file
-p STR, --pdb STR PDB file that contains same number of residues as the

mutual information matrix, output residue numbers will
be based on PDB file

-m STR, --msa STR MSA file used for building the mutual info matrix,
output residue numbers will be based on the most
complete sequence in MSA if a PDB file or sequence
label is not specified

-l STR, --label STR label in MSA file for output residue numbers

output options:
-n INT, --num-pairs INT

number of top ranking residue pairs to list (default:
100)

-q INT, --seq-sep INT
report coevolution for residue pairs that are
sequentially separated by input value (default: 3)

(continues on next page)

2.2. Evol Applications 27

ProDy Documentation, Release 1.10.5

(continued from previous page)

-t FLOAT, --min-dist FLOAT
report coevolution for residue pairs whose CA atoms
are spatially separated by at least the input value,
used when a PDB file is given and --use-dist is true
(default: 10.0)

-u, --use-dist use structural separation to report coevolving pairs
-o STR, --outname STR

output filename, default is mutinfo_rankorder.txt

Examples

Running evol rankorder --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.8 evol refine

Usage

Running evol refine -h displays:

2.2. Evol Applications 28

ProDy Documentation, Release 1.10.5

usage: evol refine [-h] [--quiet] [--examples] [-l STR] [-s FLOAT] [-c FLOAT]
[-r FLOAT] [-k] [-o STR] [-f STR] [-z]
msa

positional arguments:
msa MSA filename to be refined

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

refinement options:
-l STR, --label STR sequence label, UniProt ID code, or PDB and chain

identifier
-s FLOAT, --seqid FLOAT

identity threshold for selecting unique sequences
-c FLOAT, --colocc FLOAT

column (residue position) occupancy
-r FLOAT, --rowocc FLOAT

row (sequence) occupancy
-k, --keep keep columns corresponding to residues not resolved in

PDB structure, applies label argument is a PDB
identifier

output options:
-o STR, --outname STR

output filename, default is msa filename with _refined
suffix

-f STR, --format STR output MSA file format, default is same as input
-z, --compressed gzip refined MSA output

Examples

Running evol refine --examples displays:

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

(continues on next page)

2.2. Evol Applications 29

ProDy Documentation, Release 1.10.5

(continued from previous page)

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

2.2.9 evol search

Usage

Running evol search -h displays:

usage: evol search [-h] [--quiet] [--examples] [-b] [-s] [-g] [-e FLOAT]
[-t INT] [-o STR] [-d STR]
query

positional arguments:
query protein UniProt ID or sequence, a PDB identifier, or a

sequence file, where sequence have no gaps and 12 or
more characters

optional arguments:
-h, --help show this help message and exit
--quiet suppress info messages to stderr
--examples show usage examples and exit

sequence search options:
-b, --searchBs search Pfam-B families
-s, --skipAs do not search Pfam-A families
-g, --ga use gathering threshold
-e FLOAT, --evalue FLOAT

e-value cutoff, must be less than 10.0
-t INT, --timeout INT

timeout in seconds for blocking connection attempt
(default: 60)

output options:
-o STR, --outname STR

name for output file, default is standard output
-d STR, --delimiter STR

delimiter for output data columns (default:)

Examples

Running evol search --examples displays:

2.2. Evol Applications 30

ProDy Documentation, Release 1.10.5

Sequence coevolution analysis involves several steps that including
retrieving data and refining it for calculations. These steps are
illustrated below for RnaseA protein family.

Search Pfam database:

$ evol search 2w5i

Download Pfam MSA file:

$ evol fetch RnaseA

Refine MSA file:

$ evol refine RnaseA_full.slx -l RNAS1_BOVIN --seqid 0.98 --rowocc 0.8

Checking occupancy:

$ evol occupancy RnaseA_full.slx -l RNAS1_BOVIN -o col -S

Conservation analysis:

$ evol conserv RnaseA_full_refined.slx

Coevolution analysis:

$ evol coevol RnaseA_full_refined.slx -S -c apc

Rank order analysis:

$ evol rankorder RnaseA_full_refined_mutinfo_corr_apc.txt -p 2w5i_1-121.pdb --seq-
→˓sep 3

Running evol command will provide a description of applications:

$ evol

usage: evol [-h] [-c] [-v] [-e]

{search,fetch,filter,refine,merge,occupancy,conserv,coevol,rankorder}
...

Evol: Sequence Evolution and Dynamics Analysis

optional arguments:
-h, --help show this help message and exit
-c, --cite print citation info and exit
-v, --version print ProDy version and exit
-e, --examples show usage examples and exit

subcommands:
{search,fetch,filter,refine,merge,occupancy,conserv,coevol,rankorder}
search search Pfam with given query
fetch fetch MSA files from Pfam
filter filter an MSA using sequence labels
refine refine an MSA by removing gapped rows/colums
merge merge multiple MSAs based on common labels

(continues on next page)

2.2. Evol Applications 31

ProDy Documentation, Release 1.10.5

(continued from previous page)

occupancy calculate occupancy of rows and columns in MSA
conserv analyze conservation using Shannon entropy
coevol analyze co-evolution using mutual information
rankorder identify highly coevolving pairs of residues

See 'evol <command> -h' for more information on a specific command.

Detailed information on a specific application can be obtained by typing the command and application
names as evol search -h.

Running prody search application as follows will search Pfam database for protein families that match
the proteins in PDB structure 2w5i:

$ evol search 2w5i

On Linux, when installing ProDy from source, application scripts are placed into a default folder that is
included in PATH16 environment variable, e.g. /usr/local/bin/.

On Windows, installer places the scripts into the Scripts folder under Python distribution folder, e.g.
C:\Python27\Scripts. You may need to add this path to PATH17 environment variable yourself.

16 https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH
17 https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH

2.2. Evol Applications 32

https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH
https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH

33

ProDy Documentation, Release 1.10.5

CHAPTER 3

Reference Manual

3.1 Atomic Data

3.1.1 Atom

3.1.2 Atom Group

3.1.3 Atomic Base

3.1.4 Atom Map

3.1.5 Bond

3.1.6 Chain

3.1.7 Atom Data Fields

3.1.8 Atom Flags

3.1.9 Supporting Functions

3.1.10 Hierarchical Views

3.1.11 Atom Pointer

3.1.12 Residue

3.1.13 Segment

3.1.14 Atom Selections

3.1.15 Selection

3.1.16 Atom Subsets

3.2 Database Support

3.2.1 CATH Access Functions

3.2.2 Dali Server Functions

3.2.3 Pfam Access Functions

3.2.4 UniProt Access Functions

3.3 Dynamics Analysis

3.3.1 Analysis Functions

3.3.2 Anisotropic Network Model

3.3.3 Comparison Functions

3.3.4 NMA Model Editing

3.3.5 Supporting Functions

3.3.6 Custom Gamma Functions

3.3.7 Gaussian Network Model

3.3.8 Heatmapper Functions

3.3.9 Mechanical Stiffness Calculations

3.3.10 Normal Mode

3.3.11 Mode Set

3.3.12 Normal Mode Analysis

3.3.13 NMD File

3.3.14 Principal Component Analysis

3.3.15 Perturbation Response Scanning

3.3.16 Plotting Functions

3.3.17 Rotation Translation Blocks

3.3.18 Sampling Functions

3.3.19 Signature Dynamics of Protein Families

3.3.20 Writing TCL scripts for VMD

3.4 Ensemble Analysis

3.4.1 Conformation

3.4.2 Conformational Ensemble

3.4.3 Supporting Functions

3.4.4 PDB Structure Ensemble

3.5 KDTree

3.5.1 KD Tree

3.6 Measurement Tools

3.6.1 Contact Identification

3.6.2 Measurement Tools

3.6.3 Transformations

3.7 Protein Structure

3.7.1 PDB Blast Search

3.7.2 Structure Comparison

3.7.3 DSSP Tools

3.7.4 Miscellaneous Tools

3.7.5 PDB File Header

3.7.6 Local PDB Handlers

3.7.7 PDB Sequence Clusters

3.7.8 PDB File

3.7.9 PDB Ligands

3.7.10 Stride Tools

3.7.11 wwPDB Tools

3.8 Sequence Analysis

3.8.1 Analysis Functions

3.8.2 Multiple Sequence Alignment

3.8.3 MSA File

3.8.4 Plotting Functions

3.8.5 Sequence

3.9 Trajectory I/O

3.9.1 DCD File

3.9.2 Frame

3.9.3 PSF File

3.9.4 Trajectory Base

3.9.5 Trajectory

3.9.6 Trajectory File

3.10 ProDy Utilities

3.10.1 Type Checkers

3.10.2 Documentation Tools

3.10.3 Package Logger

3.10.4 Miscellaneous Tools

3.10.5 Path Tools

3.10.6 Package Settings

3.11 Applications API

3.11.1 Coevolution Application

3.11.2 Conservation Application

3.11.3 Pfam MSA Fetcher

3.11.4 MSA File Filter

3.11.5 MSA File Merger

3.11.6 MSA Occupancy Calculation

3.11.7 Identify Coevolving Pairs

3.11.8 MSA Refinement

3.11.9 Pfam Search

3.11.10 PDB Model/Structure Alignment

3.11.11 ANM Application

3.11.12 Biomolecule Builder

3.11.13 Blast Search PDB

3.11.14 DCD Files Concatenation

3.11.15 Contact Identification

3.11.16 PDB File Fetcher

3.11.17 GNM Application

3.11.18 PCA Application

3.11.19 Atom Selection

3.12 Configuration & Logging

This module defines functions for logging in files, configuring ProDy, and running tests.

3.1. Atomic Data 34

ProDy Documentation, Release 1.10.5

• confProDy()18

• checkUpdates()19

• startLogfile()20

• closeLogfile()21

• plog()22

18 http://prody.csb.pitt.edu/manual/reference/prody.html#prody.confProDy
19 http://prody.csb.pitt.edu/manual/reference/prody.html#prody.checkUpdates
20 http://prody.csb.pitt.edu/manual/reference/prody.html#prody.startLogfile
21 http://prody.csb.pitt.edu/manual/reference/prody.html#prody.closeLogfile
22 http://prody.csb.pitt.edu/manual/reference/prody.html#prody.plog

3.12. Configuration & Logging 35

http://prody.csb.pitt.edu/manual/reference/prody.html#prody.confProDy
http://prody.csb.pitt.edu/manual/reference/prody.html#prody.checkUpdates
http://prody.csb.pitt.edu/manual/reference/prody.html#prody.startLogfile
http://prody.csb.pitt.edu/manual/reference/prody.html#prody.closeLogfile
http://prody.csb.pitt.edu/manual/reference/prody.html#prody.plog

CHAPTER 4

Developer’s Guide

4.1 Contributing to ProDy

• Install Git and a GUI (page 36)

• Fork and Clone ProDy (page 37)

• Setup Working Environment (page 37)

• Modify, Test, and Commit (page 38)

• Push and Pull Request (page 38)

• Update Local Copy (page 38)

4.1.1 Install Git and a GUI

ProDy source code is managed using Git23 distributed revision controlling system. You need to install git,
and if you prefer a GUI for it, on your computer to be able to contribute to development of ProDy.

On Debian/Ubuntu Linux, for example, you can run the following to install git and gitk:

$ sudo apt-get install git gitk

For other operating systems, you can obtain installation instructions and files from Git24.

You will only need to use a few basic git commands. These commands are provided below, but usually
without an adequate description. Please refer to Git book25 and Git docs26 for usage details and examples.

23 http://git-scm.com/downloads
24 http://git-scm.com/downloads
25 http://git-scm.com/book
26 http://git-scm.com/docs

36

http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/book
http://git-scm.com/docs

ProDy Documentation, Release 1.10.5

4.1.2 Fork and Clone ProDy

ProDy source code an issue tracker are hosted on Github27. You need to create an account on this service, if
you do not have one already.

If you work on Mac OS or Windows, you may consider getting GitHub Mac28 or GitHub Windows29 to help
you manage a copy of the repository.

Once you have an account, you need to make a fork of ProDy, which is creating a copy of the repository in
your account. You will see a link for this on ProDy30 source code page. You will have write access to this
fork and later will use it share your changes with others.

The next step is cloning the fork from your online account to your local system. If you are not using the
GitHub software, you can do it as follows:

$ git clone https://github.com/prody/ProDy.git

This will create ProDy folder with a copy of the project files in it:

$ cd ProDy
$ ls
bdist_wininst.bat docs INSTALL.rst LICENSE.rst Makefile
MANIFEST.in prody README.rst scripts setup.py

4.1.3 Setup Working Environment

You can use ProDy directly from this clone by adding ProDy folder to your PYTHONPATH31 environment
variable, e.g.:

export PYTHONPATH=$PYTHONPATH:$/home/USERNAME/path/to/ProDy

This will not be enough though, since you also need to compile C extensions. You can run the following
series of commands to build and copy C modules to where they need to be:

$ cd ProDy
$ python setup.py build_ext --inplace --force

or, on Linux you can:

$ make build

You may also want to make sure that you can run ProDy Applications (page 4) from anywhere on your
system. One way to do this by adding ProDy/scripts folder to your PATH32 environment variable, e.g.:

export PATH=$PATH:$/home/USERNAME/path/to/ProDy/scripts

27 http://github.com/prody/ProDy
28 http://mac.github.com
29 http://windows.github.com
30 http://prody.csb.pitt.edu
31 https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
32 https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH

4.1. Contributing to ProDy 37

http://github.com/prody/ProDy
http://mac.github.com
http://windows.github.com
http://prody.csb.pitt.edu
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://matplotlib.org/faq/environment_variables_faq.html#envvar-PATH

ProDy Documentation, Release 1.10.5

4.1.4 Modify, Test, and Commit

When modifying ProDy files you may want to follow the Style Guide for ProDy (page 42). Closely following
the guidelines therein will allow for incorporation of your changes to ProDy quickly.

If you changed .py files, you should ensure to check the integrity of the package. To do this, you should at
least run fast ProDy tests as follows:

$ cd ProDy
$ nosetests

See Testing ProDy (page 44) for alternate and more comprehensive ways of testing. ProDy unittest suit may
not include a test for the function or the class that you just changed, but running the tests will ensure that
the ProDy package can be imported and run without problems.

After ensuring that the package runs, you can commit your changes as follows:

$ git commit modified_file_1.py modified_file_2.py

or:

$ git commit -a

This command will open a text editor for you to describe the changes that you just committed.

4.1.5 Push and Pull Request

After you have committed your changes, you will need to push them to your Bitbucket account:

git push origin master

This step will ask for your account user name. If you are going to push to your GitHub/Bitbucket account
frequently, you may add an SSH key for automatic authentication. To add an SSH key for your system, go
to Edit Your Profile → SSH keys page on GitHub or Manage Account → SSH keys page on Bitbucket.

After pushing your changes, you will need to make a pull request from your to notify ProDy developers of
the changes you made and facilitate their incorporation to ProDy.

4.1.6 Update Local Copy

You can also keep an up-to-date copy of ProDy by pulling changes from the master ProDy33 repository on a
regular basis. You need add to the master repository as a remote to your local copy. You can do this running
the following command from the ProDy project folder:

$ cd prody
$ git remote add prodymaster git@github.com:abakan/ProDy.git

or:

$ cd prody
$ git remote add prodymaster git@bitbucket.org:abakan/prody.git

33 http://prody.csb.pitt.edu

4.1. Contributing to ProDy 38

http://prody.csb.pitt.edu

ProDy Documentation, Release 1.10.5

You may use any name other than prodymaster, but origin, which points to the ProDy fork in your account.

After setting up this remote, calling git pull command will fetch latest changes from ProDy34 master
repository and merge them to your local copy:

$ git pull prodymaster master

Note that when there are changes in C modules, you need to run the following commands again to update
the binary module files:

$ python setup.py build_ext --inplace --force

4.2 Documenting ProDy

• Building Manual (page 39)

• Building Website (page 39)

ProDy documentation is written using reStructuredText35 markup and prepared using Sphinx36. You may
install Sphinx using easy_install, i.e. easy_install -U Sphinx, or using package manager on your
Linux machine.

4.2.1 Building Manual

ProDy Manual in HTML and PDF formats can be build as follows:

$ cd docs
$ make html
$ make pdf

If all documentation strings and pages are properly formatted according to reStructuredText37 markup,
documentation pages should compile without any warnings. Note that to build PDF files, you need to
install latex and pdflatex programs.

Read the Docs

A copy of ProDy manual is hosted on Read the Docs38 and can be viewed at http://prody.readthedocs.org/.
Read the Docs is configured to build manual pages for the devel branch (latest) and the recent stable
versions. The user name for Read the Docs is prody.

4.2.2 Building Website

ProDy-website source is hosted at https://github.com/prody/ProDy-website This project contains tutorial
files and the home pages for ProDy and other related software.

Latest version

To build website on ProDy server, start with pulling changes:
34 http://prody.csb.pitt.edu
35 http://docutils.sf.net/rst.html
36 http://sphinx.pocoo.org/
37 http://docutils.sf.net/rst.html
38 https://readthedocs.org/

4.2. Documenting ProDy 39

http://prody.csb.pitt.edu
http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
http://docutils.sf.net/rst.html
https://readthedocs.org/
http://prody.readthedocs.org/
https://github.com/prody/ProDy-website

ProDy Documentation, Release 1.10.5

$ cd ProDy-website
$ git pull

Running the following command will build HTML pages for the latest stable release of ProDy:

$ make html

HTML pages for manual and all tutorials are build as a single project, which allows for referencing from
manual to tutorials.

PDF files for the manual and tutorials, and also download files are build as follows:

$ make pdf

PDF and TGZ/ZIP files are copied to appropriate places after they are built.

4.3 How to Make a Release

1. Make sure ProDy imports and passes all unit tests both Python 2 and Python 3, and using nose
nosetests command:

$ cd ProDy
$ nosetests
$ nosetests3

See Testing ProDy (page 44) for more on testing.

2. Update the version number in:

• prody/__init__.py

• ./PKG-INFO

Also, commend + '-dev' out, so that documentation will build for a stable release.

3. Update the most recent changes and the latest release date in:

• docs/release/vX.Y_series.rst.

If there is a new incremental release, start a new file.

4. Make sure the following files are up-to-date.

• README.txt

• MANIFEST.in

• setup.py

If there is a new file format, that is a new extensions not captured in MANIFEST.in, it should be
included.

If there is a new C extension, it should be listed in setup.py.

After checking these files, commit change and push them to GitHub39.

5. Generate the source distributions:

39 http://github.com/prody/ProDy

4.3. How to Make a Release 40

http://github.com/prody/ProDy

ProDy Documentation, Release 1.10.5

$ cd ..
$ python setup.py sdist --formats=gztar,zip

6. Prepare and test Python Wheels40 on Windows (see Making Windows Installers (page 49)).

Wheels should be prepared for the following versions of Python:

$ C:\Python27\python setup.py bdist_wheel
$ C:\Python35\python setup.py bdist_wheel
$ C:\Python36\python setup.py bdist_wheel

Alternatively, use bdist_wheel.bat to run these commands. When there is a newer Python major
release, it should be added to this list. Don’t forget to pull most recent changes to your Windows
machine.

A good practice is installing ProDy using all newly created installers and checking that it works.
ProDy script can be used to check that, e.g.:

$ C:\Python33\Scripts\prody.bat anm 1ubi

If this command runs for all supported Python versions, release is good to go.

7. Put all installation source and executable in dist directory.

#. Upload the new release files to the PyPI41 using twine (NOTE: this step is irreversible! If there were to be
a change to ProDy after this step, then it needs to be prepared as a whole new release):

$ twine upload dist/*

This will offer a number of options. ProDy on PyPI is owned by user
``prody.devel``.

1. Commit final changes, if there are any:

$ cd ..
$ git commit -a

2. Tag the repository with the current version number and push new tag:

$ git tag vX.Y
$ git push --tags

3. Rebase devel branch to master:

$ git checkout master
$ git rebase devel
$ git push

4. Update the documentation on ProDy42 website. See Documenting ProDy (page 39).

5. Now that you made a release, you can go back to development. You may start with appending
'-dev' to __release__ in prody/__init__.py.

40 https://pythonwheels.com/
41 http://pypi.python.org/pypi/ProDy
42 http://prody.csb.pitt.edu

4.3. How to Make a Release 41

https://pythonwheels.com/
http://pypi.python.org/pypi/ProDy
http://prody.csb.pitt.edu

ProDy Documentation, Release 1.10.5

4.4 Style Guide for ProDy

• Introduction (page 42)

• Code Layout (page 42)

• Whitespaces (page 43)

• Naming Conventions (page 43)

• Variable Names (page 44)

4.4.1 Introduction

PEP 843, the Style Guide for Python Code, is adopted in the development of ProDy package. Contributions to
ProDy shall follow PEP 844 and the specifications and additions provided in this addendum.

4.4.2 Code Layout

Indentation

Use 4 spaces per indentation level in source code (.py) and never use tabs as a substitute.

In documentation files (.rst), use 2 spaces per indentation level.

Maximum line length

Limit all lines to a maximum of 79 characters in both source code and documentation files. Exceptions may
be made when tabulating data in documentation files and strings. The length of lines in a paragraph may
be much less than 79 characters if the line ends align better with the first line, as in this paragraph.

Encodings

In cases where an encoding for a .py file needs to be specified, such as when characters like 𝛼, 𝛽, or Å are
used in docstrings, use UTF-8 encoding, i.e. start the file with the following line:

-*- coding: utf-8 -*-

Imports

In addition to PEP 8#imports45 recommendations regarding imports, the following should be applied:

• relative intra-ProDy imports are discouraged, use from prody.atomic import AtomGroup not
from atomic import AtomGroup

• always import from second top level module, use from prody.atomic import AtomGroup and
not from prody.atomic.atomgroup import AtomGroup, because file names may change or
files that grow too big may be split into smaller modules, etc.

Here is a series of properly formatted imports following a module documentation string:

43 https://www.python.org/dev/peps/pep-0008
44 https://www.python.org/dev/peps/pep-0008
45 https://www.python.org/dev/peps/pep-0008#imports

4.4. Style Guide for ProDy 42

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008#imports

ProDy Documentation, Release 1.10.5

"""This module defines a function to calculate something interesting."""

import os.path
from collections import defaultdict
from time import time

import numpy as np

from prody.atomic import AtomGroup
from prody.measure import calcRMSD
from prody.tools import openFile
from prody import LOGGER, SETTINGS

__all__ = ['calcSomething']

4.4.3 Whitespaces

In addition to recommendations regarding whitespace use in Python code (PEP 8#whitespace-in-
expressions-and-statements46), two whitespace characters should follow a period in documentation files
and strings to help reading documentation in terminal windows and text editors.

4.4.4 Naming Conventions

ProDy naming conventions aim at making the library suitable for interactive sessions, i.e. easy to remember
and type.

Class names

Naming style for classes is CapitalizedWords (or CapWords, or CamelCase). Abbreviations and/or
truncated names should be used to keep class names short. Some class name examples are:

• ANM for Anisotropic Network Model

• HierView for Hierarchical View

Exception names

Prefer using a suitable standard-library exception over defining a new one. If you absolutely need to define
one, use the class naming convention. Use the suffix “Error” for exception names, when exception is an
error:

• SelectionError, the only exception defined in ProDy package

Method and function names

Naming style for methods and functions is mixedCase, that differs from CapWords by initial lowercase
character. Starting with a lowercase (no shift key) and using no underscore characters decreases the number
of key strokes by half in many cases in interactive sessions.

Method and function names should start with a verb, suggestive on the action, and followed by one or
two names, where the second name may start with a lower case letter. Some examples are moveAtoms(),
wrapAtoms(), assignSecstr(), and calcSubspaceOverlap().

Abbreviations and/or truncated names should be used and obvious words should be omitted
to limit number of names to 20 characters. For example, buildHessian() is preferred over
buildHessianMatrix(). Another example is the change from using getResidueNames() to using

46 https://www.python.org/dev/peps/pep-0008#whitespace-in-expressions-and-statements

4.4. Style Guide for ProDy 43

https://www.python.org/dev/peps/pep-0008#whitespace-in-expressions-and-statements
https://www.python.org/dev/peps/pep-0008#whitespace-in-expressions-and-statements

ProDy Documentation, Release 1.10.5

AtomGroup.getResnames(). In fact, this was part of a series of major Release Notes (page 51) aimed at
refining the library for interactive usage.

In addition, the following should be applied to enable grouping of methods and functions based on their
action and/or return value:

• buildSomething(): methods and functions that calculate a matrix should start with build, e.g.
GNM.buildKirchhoff() and buildDistMatrix()

• calcSomething(): methods that calculate new data but does not necessarily return anything and
especially those that take timely actions, should start with calc, e.g. PCA.calcModes()

• getSomething(): methods, and sometimes functions, that return a copy of data should start with
get, such as listReservedWords()

• setSomething(): methods, and sometimes functions, that alter internal data should start with set

4.4.5 Variable Names

Variable names in functions and methods should contain only lower case letters, and may contain under-
score characters to increase readability.

4.5 Testing ProDy

• Running Unittests (page 44)

• Unittest Development (page 44)

4.5.1 Running Unittests

The easiest way to run ProDy unit tests is using nose47. The following will run all tests:

$ nosetests prody

To skip tests that are slow, use the following:

$ nosetests prody -a '!slow'

To run tests for a specific module do as follows:

$ nosetests prody.tests.atomic prody.tests.sequence

4.5.2 Unittest Development

Unit test development should follow these guidelines:

1. For comparing Python numerical types and objects, e.g. int, list, tuple, use methods of unittest.
TestCase48.

47 http://nose.readthedocs.org
48 https://docs.python.org/3/library/unittest.html#unittest.TestCase

4.5. Testing ProDy 44

http://nose.readthedocs.org
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

ProDy Documentation, Release 1.10.5

2. For comparing Numpy arrays, use assertions available in numpy.testing module.

3. All test files should be stored in tests folder in the ProDy package directory, i.e. prody/tests/

4. All tests for functions and classes in a ProDy module should be in a single test file named after the
module, e.g. test_atomic/test_select.py.

5. Data files for testing should be located in tests/test_datafiles.

4.6 Writing Tutorials

• Tutorial Setup (page 45)

• Style and Organization (page 46)

• Input/Output Files (page 46)

• Including Code (page 47)

• Including Figures (page 48)

• Testing Code (page 49)

• Publishing Tutorial (page 49)

This is a short guide for writing ProDy tutorials that are published as part of online documentation pages,
and also as individual downloadable PDF files.

4.6.1 Tutorial Setup

First go to doc folder in ProDy package and generate necessary files for your tutorial using
start-tutorial.sh script:

$ cd doc
$./start-tutorial.sh
Enter tutorial title: ENM Analysis using ProDy
Enter a short title: ENM Analysis
Enter author name: First Last

Tutorial folders and files are prepared, see tutorials/enm_analysis

This will generate following folder and files:

$ cd tutorials/enm_analysis/
$ ls -lgo
-rw-r--r-- 1 328 Apr 30 16:48 conf.py
-rw-r--r-- 1 395 Apr 30 16:48 index.rst
-rw-r--r-- 1 882 Apr 30 16:48 intro.rst
-rw-r--r-- 1 1466 Apr 30 16:48 Makefile
lrwxrwxrwx 1 13 Apr 30 16:48 _static -> ../../_static

Note that short title will be used as filename and part of the URL of the online documentation pages.

If tutorial logo/image that you want to use is different from ProDy logo, update the following line in
conf.py:

4.6. Writing Tutorials 45

ProDy Documentation, Release 1.10.5

tutorial_logo = u'enm.png' # default is ProDy logo
tutorial_prody_version = u'' # default is latest ProDy version

Also, note ProDy version if the tutorial is developed for a specific release.

4.6.2 Style and Organization

ProDy documentation and tutorials are written using reStructuredText49, an easy-to-read/write file format.
See reStructuredText Primer50 for a quick introduction.

reStructuredText is stored in plain-text files with .rst extension, and converted to HTML and PDF pages
using Sphinx51.

index.rst and intro.rst files are automatically generated. index.rst file should include title and
table of contents of the tutorial. Table of contents is just a list of .rst files that are part of the tutorial. They
be listed in the order that they should appear in the final PDF file:

.. _enm-analysis:

.. use "enm-analysis" to refer to this file, i.e. :ref:`enm-analysis`

ENM Analysis using ProDy

.. add .rst files to `toctree` in the order that you want them

.. toctree::
:glob:
:maxdepth: 2

intro

Add more .rst files as needed. See other tutorials in doc/tutorials folder as examples.

4.6.3 Input/Output Files

All files needed to follow the tutorial should be stored in tutorial_name_files folder. There is usually
no need to provide PDB files, as ProDy automatically downloads them when needed. Optionally, output
files can also be provided.

Note: Small input and output files that contain textual information may be included in the git repository,
but please avoid including large files in particular those that contain binary data.

49 http://docutils.sourceforge.net/rst.html
50 http://sphinx-doc.org/rest.html
51 http://sphinx-doc.org/

4.6. Writing Tutorials 46

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/

ProDy Documentation, Release 1.10.5

4.6.4 Including Code

Python code in tutorials should be included using IPython Sphinx directive52. In the beginning of each
.rst file, you should make necessary imports as follows:

.. ipython:: python

from prody import *
from matplotlib.pylab import *
ion()

This will convert to the following:

In [1]: from prody import *

ImportErrorTraceback (most recent call last)
<ipython-input-1-5d14cc12dc44> in <module>()
----> 1 from prody import *

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/v1.10.5/local/lib/python2.
→˓7/site-packages/ProDy-1.10.5-py2.7-linux-x86_64.egg/prody/__init__.pyc in <module>()

83 from .atomic import SELECT
84

---> 85 from . import proteins
86 from .proteins import *
87 __all__.extend(proteins.__all__)

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/v1.10.5/local/lib/python2.
→˓7/site-packages/ProDy-1.10.5-py2.7-linux-x86_64.egg/prody/proteins/__init__.py in
→˓<module>()

160 __all__ = []
161

--> 162 from . import compare
163 from .compare import *
164 __all__.extend(compare.__all__)

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/v1.10.5/local/lib/python2.
→˓7/site-packages/ProDy-1.10.5-py2.7-linux-x86_64.egg/prody/proteins/compare.py in
→˓<module>()

15 from prody.measure import calcTransformation, printRMSD, calcDistance
16 from prody import LOGGER, SELECT, PY2K, PY3K

---> 17 from prody.sequence import MSA
18 from prody.utilities import cmp
19

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/v1.10.5/local/lib/python2.
→˓7/site-packages/ProDy-1.10.5-py2.7-linux-x86_64.egg/prody/sequence/__init__.py in
→˓<module>()

51 __all__ = []
52

---> 53 from . import msa
54 from .msa import *
55 __all__.extend(msa.__all__)

/home/docs/checkouts/readthedocs.org/user_builds/prody/envs/v1.10.5/local/lib/python2.
→˓7/site-packages/ProDy-1.10.5-py2.7-linux-x86_64.egg/prody/sequence/msa.py in
→˓<module>() (continues on next page)

52 http://ipython.org/ipython-doc/dev/development/ipython_directive.html

4.6. Writing Tutorials 47

http://ipython.org/ipython-doc/dev/development/ipython_directive.html

ProDy Documentation, Release 1.10.5

(continued from previous page)

7 from numpy import where, sort, concatenate, vstack, isscalar, chararray
8

----> 9 from Bio import AlignIO
10 from Bio import pairwise2
11 from Bio.SubsMat import MatrixInfo as matlist

ImportError: No module named Bio

In [2]: from matplotlib.pylab import *

In [3]: ion()

Then you can add the code for the tutorial:

.. ipython:: python

pdb = parsePDB('1p38')

In [4]: pdb = parsePDB('1p38')

NameErrorTraceback (most recent call last)
<ipython-input-4-08265ebed54c> in <module>()
----> 1 pdb = parsePDB('1p38')

NameError: name 'parsePDB' is not defined

4.6.5 Including Figures

IPython directive should also be used for including figures:

.. ipython:: python

@savefig tutorial_name_figure_name.png width=4in
plot(range(10))

@savefig tutorial_name_figure_two.png width=4in
plot(range(100)); # used ; to suppress output

@savefig decorator was used to save the figure.

Note: Figure names needs to be unique within the tutorial and should be prefixed with the tutorial name.

Note that in the second plot()53 call, we used a semicolon to suppress the output of the function.

If you want to make modifications to the figure, save it after the last modification:

.. ipython:: python

plot(range(10));
grid();
xlabel('X-axis')

(continues on next page)

53 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

4.6. Writing Tutorials 48

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

ProDy Documentation, Release 1.10.5

(continued from previous page)

@savefig tutorial_name_figure_three.png width=4in
ylabel('Y-axis')

4.6.6 Testing Code

If there is any particular code output that you want to test, you can use @doctest decorator as follows:

.. ipython::

@doctest
In [1]: 2 + 2
Out[1]: 4

In [5]: 2 + 2
Out[5]: 4

Failing to produce the correct output will prevent building the documentation.

4.6.7 Publishing Tutorial

To see how your .rst files convert to HTML format, use the following command:

$ make html

You will find HTML files in _build/html folder.

Once your tutorial is complete and looks good in HTML (no code execution problems), following com-
mands can be used to generate a PDF file and tutorial file achieves:

$ make pdf
$ make files

ProDy online documentation will contain these files as well as tutorial pages in HTML format.

4.7 Making Windows Installers

MinGW54 (for 32-bit system) or MinGW-w6455 (for 64-bit system) can be used for compiling C modules
when making Windows installers. Please follow the instructions56 to install and configure them.

libpython57 is also required to be installed. If the compiler complains, such as, “’::hypot’ has not been
declared”, please refer to this link58.

4.8 Cross-platform Issues

54 http://www.mingw.org/
55 http://mingw-w64.org/
56 https://wiki.python.org/moin/WindowsCompilers
57 https://anaconda.org/anaconda/libpython
58 https://stackoverflow.com/questions/10660524/error-building-boost-1-49-0-with-gcc-4-7-0

4.7. Making Windows Installers 49

http://www.mingw.org/
http://mingw-w64.org/
https://wiki.python.org/moin/WindowsCompilers
https://anaconda.org/anaconda/libpython
https://stackoverflow.com/questions/10660524/error-building-boost-1-49-0-with-gcc-4-7-0

ProDy Documentation, Release 1.10.5

• Numpy integer type (page 50)

• Relative paths (page 50)

This section describes cross-platform issues that may emerge and provides possible solutions for them.

4.8.1 Numpy integer type

Issues may arise when comparing Numpy integer types with Python int(). Python int() equivalent
Numpy integer type on Windows (Win7 64bit, Python 32bit) is int32, while on Linux (Ubuntu 64bit) it
is int64. For example, the statement isinstance(np.array([1], np.int64), int) may return
True resulting in unexpected behavior in ProDy functions or methods. If Numpy integer type needs to be
specified, using int seems a safe option.

4.8.2 Relative paths

os.path.relpath()59 function raises exceptions when the working directory and the path of interest
are on separate drives, e.g. trying to write a C:\temp while running tests on D:\ProDy. Instead of this
os.path.relpath()60, ProDy function relpath() should be used to avoid problems.

59 https://docs.python.org/3/library/os.path.html#os.path.relpath
60 https://docs.python.org/3/library/os.path.html#os.path.relpath

4.8. Cross-platform Issues 50

https://docs.python.org/3/library/os.path.html#os.path.relpath
https://docs.python.org/3/library/os.path.html#os.path.relpath

CHAPTER 5

Release Notes

5.1 ProDy 1.10 Series

• 1.10.5 (May 18, 2018) (page 51)

• 1.10.4 (May 15, 2018) (page 52)

• 1.10.3 (May 14, 2018) (page 52)

• 1.10.2 (May 2, 2018) (page 52)

• 1.10.1 (May 1, 2018) (page 52)

• 1.10 (Apr 30, 2018) (page 52)

– Signature Dynamics (page 52)

5.1.1 1.10.5 (May 18, 2018)

New Features:

• Added overlay and gap option to showAtomicLines().

Bug Fixes and Improvements:

• Reorganized MechStiff functions. Now MechStiff functions are moved out from

the ANM class, and get. . . were renamed to calc. . .

• Fixed a problem that an error will be raised when searching a sequence

against Pfam.

• PY3K compatibility fixes.

51

ProDy Documentation, Release 1.10.5

5.1.2 1.10.4 (May 15, 2018)

• Minor fixes.

5.1.3 1.10.3 (May 14, 2018)

New Features:

• Added CATHDB for querying information from CATH database.

• Added sliceAtomicData() and extendAtomicData() to slice more extend data based on
Selection or other types of Atomic objects.

Bug Fixes and Improvements:

• Switched to Python Wheel for distributing on Windows. This will allow Windows users to pip install
prody.

• Fixed a error when compiling C++ extensions on MacOS.

• Various bug fixes according to issues proposed on the GitHub.

5.1.4 1.10.2 (May 2, 2018)

• Minor fixes.

5.1.5 1.10.1 (May 1, 2018)

• Added the function sliceAtomicData for slicing data based on slicing atoms.

• Updated the documentation for making a release.

• Other documentation and minor fixes.

5.1.6 1.10 (Apr 30, 2018)

Signature Dynamics

• Added calcEnsembleENMs() to compute ENMs on each conformation of a given ensemble to ob-
tain an ensemble of modes.

• Added ModeEnsemble and sdarray classes as the basic data types for signature dynamics.

• Added functions such as calcSignatureSqFlucts(), calcSignatureCrossCorr(),
calcSignatureFractVariance() to extract signature dynamics.

• Added calcEnsembleSpectralOverlaps() to obtain dynamical overlaps/distances among the
conformations in a given ensemble.

New Features:

Visualization

• Added showAtomicLines() and showAtomicMatrix() functions to improve visualization.

• Added an networkx option to showTree() so that the user can choose to use networkx to visualize
a given tree.

5.1. ProDy 1.10 Series 52

ProDy Documentation, Release 1.10.5

Ensemble and PDBEnsemble

• Associated an MSA object to the PDBEnsemble class.

• Added an pairwise option to Ensemble.getRMSDs() to obtain an RMSD table of every pair of con-
formations in the ensemble.

• Improved Ensemble.setAtoms() for selecting a subset of residues/atoms of the ensemble.

Databases and Web Services

• Added methods and classes for obtaining data from CATH and Dali.

• Added additional functions for Uniprot and Pfam such as queryUniprot() and
parsePfamPDBs().

Bug Fixes and Improvements:

• Fixed compatibility problems for Python 2 and 3.

• Improved the saveModel() function to include class-specific features.

• Fixed a bug related to the Atomgroup addition method.

• Bug fixes to NMA classes.

• Fixed a problem with MSA indexing.

• Reorganized file structures and functions for consistency.

• Other bug fixes.

5.2 ProDy 1.9 Series

• 1.9.4 (Feb 02, 2018) (page 53)

• 1.9.3 (Oct 09, 2017) (page 53)

• 1.9.2 (Aug 29, 2017) (page 54)

• 1.9.1 (Aug 18, 2017) (page 54)

• 1.9 (May 23, 2017) (page 54)

5.2.1 1.9.4 (Feb 02, 2018)

• Undocumented release and fixes.

5.2.2 1.9.3 (Oct 09, 2017)

Bugfixes

• Bug fix about http and ftp based pdb downloads.

• Bug fixes in PRS calculations.

5.2. ProDy 1.9 Series 53

ProDy Documentation, Release 1.10.5

5.2.3 1.9.2 (Aug 29, 2017)

** New Features**:

Migration to pypi.org

• All repositories are moved to pypi.org

5.2.4 1.9.1 (Aug 18, 2017)

** New Features**:

PDB Secondary Structures

• It is possible to write secondary structure infrmation to PDBs.

Bugfixes

• Fixed the problem about clang compiler for saxs tools.

• If FTP client is not working, HTTP client will be used when downloading PDBs.

5.2.5 1.9 (May 23, 2017)

New Features:

Perturbation Response Scanning

• Perturbation Response Scanning method is fully implemented with new plotting tools.

• Effectors and sensors are calculated from PRS tool.

Visualization with py3Dmol

• In jupyter notebook, if you have installed py3Dmol you can use py3Dmol visualization directly in-
stead of simple matplotlib visualization.

mmcif parser

• Another structural format cif is also a part of ProDy parser now.

Bugfixes

• Various indexing issues are fixed.

• Some of the obsolete pdbs will not be downloaded anymore, instead replaced pdbs will be down-
loaded. This will change the priority between ftp and http servers.

5.3 ProDy 1.8 Series

• 1.8.2 (Jun 5, 2016) (page 55)

• 1.8.1 (May 28, 2016) (page 55)

• 1.8 (May 13, 2016) (page 55)

– MechStiff (page 55)

5.3. ProDy 1.8 Series 54

ProDy Documentation, Release 1.10.5

5.3.1 1.8.2 (Jun 5, 2016)

• addCoordset() in PDBEnsemble class, has an additional argument for NMR models.

5.3.2 1.8.1 (May 28, 2016)

Bugfixes

• getHits() in PDBBlastRecord class, default overlap threshold changed to 0.7 to match with
mapOntoChain().

• calcModes() in RTB have a bug on number of modes and fixed.

• Tab and indentation errors with Python 3.4 are fixed.

5.3.3 1.8 (May 13, 2016)

MechStiff

• Identification of the weakest/strongest elements of the structure architecture provided together with
3D vizualization and statistics analysis.

• Determination of the effective spring constant for selected pair of residues - useful for Single Molecule
Force Spectroscopy (SMFS, AFM) and Steered Molecular Dynamics simulations.

• Evaluating the contributions of each mode to selected deformations

New Features:

Python 2 and 3 Support

• ProDy has been refactored to support Python 2.7 and 3.4. Windows installers for Python 2.7 and 3.4
are available in Installation (page 1).

• Unit tests are compatible with Python 2.7 and 3.4, and running them with other versions gives errors
due to unavailability of some unittest61 features.

Bugfixes

• Various indexing issues are fixed.

• Compatibility issue of searchPfam() with Python 2.7.11 is fixed.

5.4 ProDy 1.7 Series

• 1.7.1 (May 31, 2015) (page 56)

• 1.7 (Dec 23, 2013) (page 56)

61 https://docs.python.org/3/library/unittest.html#module-unittest

5.4. ProDy 1.7 Series 55

https://docs.python.org/3/library/unittest.html#module-unittest

ProDy Documentation, Release 1.10.5

5.4.1 1.7.1 (May 31, 2015)

Changes:

• searchPfam() uses hmmer for given sequence inputs instead of pfam search.

5.4.2 1.7 (Dec 23, 2013)

New Features:

• buildPCMatrix() is implemented for calculation of coevolution with PSICOV method from multi-
ple sequence alignments.

• specMergeMSA() is implemented for merging multiple sequence alignment files based on the
species identifiers of sequences.

• exANM is implemented for explicit membrane ANM calculations.

• writeMembranePDB() is implemented for writing PDB structures of created membranes for ex-
ANM class.

5.5 ProDy 1.6 Series

• 1.6.1 (May 31, 2015) (page 56)

• 1.5 (Dec 23, 2013) (page 56)

5.5.1 1.6.1 (May 31, 2015)

Changes:

• searchPfam() uses hmmer for given sequence inputs instead of pfam search.

5.5.2 1.5 (Dec 23, 2013)

New Features:

• buildPCMatrix() is implemented for calculation of coevolution with PSICOV method from multi-
ple sequence alignments.

• specMergeMSA() is implemented for merging multiple sequence alignment files based on the
species identifiers of sequences.

• exANM is implemented for explicit membrane ANM calculations.

• writeMembranePDB() is implemented for writing PDB structures of created membranes for ex-
ANM class.

5.5. ProDy 1.6 Series 56

ProDy Documentation, Release 1.10.5

5.6 ProDy 1.5 Series

• 1.5.1 (Dec 24, 2013) (page 57)

• 1.5 (Dec 23, 2013) (page 57)

5.6.1 1.5.1 (Dec 24, 2013)

Changes:

• PDBBlastRecord become picklable.

5.6.2 1.5 (Dec 23, 2013)

New Features:

• buildDirectInfoMatrix() and calcMeff() are implemented for calculation of direct informa-
tion from multiple sequence alignments.

• showDirectInfoMatrix() and showSCAMatrix() functions are implemented for displaying co-
evolutionary data.

• RTB is implemented for Rotations-Translations of Blocks calculations. Optional arguments also permit
imANM calculations.

Availability:

• Source is moved from lib/prody to prody.

• Source code will be hosted only at GitHub62.

Improvements:

• DCDFile and parseDCD() support DCD files written by cpptraj.

Testing:

• ProDy test command (prody test) and function prody.test() has been removed for easier main-
tenance of testing functions. See Testing ProDy (page 44) for more information on how to test ProDy.

5.7 ProDy 1.4 Series

• 1.4.9 (Nov 14, 2013) (page 58)

• 1.4.8 (Nov 4, 2013) (page 59)

• 1.4.7 (Oct 29, 2013) (page 59)

• 1.4.6 (Oct 16, 2013) (page 59)

• 1.4.5 (Sep 6, 2013) (page 60)

62 http://github.com/prody/ProDy

5.6. ProDy 1.5 Series 57

http://github.com/prody/ProDy

ProDy Documentation, Release 1.10.5

• 1.4.4 (July 22, 2013) (page 60)

• 1.4.3 (June 14, 2013) (page 60)

• 1.4.2 (April 19, 2013) (page 61)

• 1.4.1 (Dec 16, 2012) (page 61)

– Normal Mode Wizard (page 62)

• 1.4 (Dec 2, 2012) (page 62)

5.7.1 1.4.9 (Nov 14, 2013)

Upcoming changes:

• Support for Python 3.1 and NumPy 1.5 will be dropped, meaning no Windows installers will be built
for these versions of them.

Improvements:

• HierView can handle Residue instances that have same segment63 name, chain64 identi-
fier, and resnum65, if PDB file contains TER lines to terminate these residues. If these three
identifiers are shared by multiple residues, indexing AtomGroup instances will return a
list of residues. This behavior can be used as follows. Note that in v1.5, this will be the
default behavior.

>>> pdb_lines = """
... ATOM 1 O WAT A 1 4.694 -3.891 -0.592 1.00 1.00
... ATOM 2 H1 WAT A 1 5.096 -3.068 -0.190 1.00 1.00
... ATOM 3 H2 WAT A 1 5.420 -4.544 -0.808 1.00 1.00
... TER
... ATOM 4 O WAT A 1 -30.035 19.116 -2.193 1.00 1.00
... ATOM 5 H1 WAT A 1 -30.959 18.736 -2.244 1.00 1.00
... ATOM 6 H2 WAT A 1 -29.993 19.960 -2.728 1.00 1.00
... TER
... ATOM 7 O WAT A 1 -77.584 -21.524 -37.894 1.00 1.00
... ATOM 8 H1 WAT A 1 -77.226 -21.966 -38.717 1.00 1.00
... ATOM 9 H2 WAT A 1 -77.023 -20.726 -37.674 1.00 1.00
... TER"""
>>> from StringIO import StringIO
>>> atoms = parsePDBStream(StringIO(pdb_lines))

Current behavior:

>>> print(atoms.numResidues())
1
>>> atoms['A', 1]
<Residue: WAT 1 from Chain A from Unknown (9 atoms)>

To activate the new behavior (which will be the default behavior in v1.5):

>>> hv = atoms.getHierView(ter=True)
>>> print(hv.numResidues())
>>> hv['A', 1]

63 http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-segment
64 http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-chain
65 http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resnum

5.7. ProDy 1.4 Series 58

http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-segment
http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-chain
http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resnum

ProDy Documentation, Release 1.10.5

• parsePDB() reads TER records in PDB files. Atoms and hetero atoms (hetatm66) that are
followed by a TER record are now flagged as pdbter67.

Bugfixes:

• Fixed memory leaks in uniqueSequences() and buildSeqidMatrix().

5.7.2 1.4.8 (Nov 4, 2013)

New Features:

• New analysis functions buildOMESMatrix() and buildSCAMatrix() are implemented.

• New AtomGroup.numBytes() method returns an estimate of memory usage.

• New countBytes() utility function is added for counting bytes used by NumPy arrays.

Improvements:

• parsePDB() resizes data arrays to decrease memory usage.

Bugfixes:

• Fixed memory leaks in MSA analysis functions.

• Fixed potential problems with importing contributed libraries.

5.7.3 1.4.7 (Oct 29, 2013)

Improvements:

• AtomGroup, Selection, and other Atomic classes are picklable.

• Improved equality tests for AtomGroup. Two different instances are considered equal if they contain
identical data and coordinate sets.

5.7.4 1.4.6 (Oct 16, 2013)

Bugfixes:

• Selection problem with using resid68 is fixed (issue 16069)

• Fixed a memory leak in MSA parsers written in C. When dealing with large files, leak would cause a
segmentation fault.

• Fixed a memory leak in MSA parsers written in C. When dealing with large files, leak would cause a
segmentation fault.

• Fixed a reference counting problem in MSA parsers in C that would cause segmentation fault when
reading files that uses the same label for multiple sequences.

• Updated fetchPDBLigand() to use PDB for fetching XML files.

• Revised handling of MSA file formats to avoid exceptions for unknown extensions.

66 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-hetatm
67 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-pdbter
68 http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resid
69 https://github.com/prody/ProDy/issues/160

5.7. ProDy 1.4 Series 59

http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-hetatm
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-pdbter
http://prody.csb.pitt.edu/manual/reference/atomic/fields.html#term-resid
https://github.com/prody/ProDy/issues/160

ProDy Documentation, Release 1.10.5

5.7.5 1.4.5 (Sep 6, 2013)

New Features:

• parsePDBHeader() function can parse space group information from header sec-
tion specified as REMARK 290, e.g. parsePDBHeader('1mkp', 'space_group') or
parsePDBHeader('1mkp')['space_group']

• heavy70 selection flag is defined as an alias for noh71.

• matchChains() function can match non-hydrogen atoms using subset='heavy' keyword argu-
ment.

• Added update_coords keyword argument to PCA.builCovariance(), so that average coordi-
nates calculated internally can be stored in ensemble or trajectory objects used as input.

Improvements:

• Unit tests can be run with Python 2.6 when unittest2 module is installed.

Bugfixes:

• Fixed problems with reading compressed PDB files using Python 3.3.

• Fixed a bug in parseSTRIDE() function that prevented reading files.

• Improved parsing of biomolecular transformations.

• Fixed memory allocation in C code used by parseMSA() (Python 2.6).

• Fixed a potential name error in trajectory classes.

• Fixed problems in handling compressed files when using Python 2.6 and 3.3.

• Fixed a problem with indexing NMA instances in Python 3 series.

5.7.6 1.4.4 (July 22, 2013)

Improvements:

• writeNMD() and parseNMD() write and read segment names. NMWiz is also improved to handle
segment names. Improvements will be available in VMD v1.9.2.

Bugfixes:

• A bug in saveAtoms() that would cause KeyError72 when bonds are set but fragments are not
determined is fixed.

• Import ProDy would fail when HOME73 is not set. Changed PackageSettings to handle this case
graciously.

5.7.7 1.4.3 (June 14, 2013)

Changes:

• getVMDpath() and setVMDpath() functions are deprecated for removal, use pathVMD() instead.

• Increased blastPDB() timeout to 60 seconds.
70 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-heavy
71 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-noh
72 https://docs.python.org/3/library/exceptions.html#KeyError
73 https://matplotlib.org/faq/environment_variables_faq.html#envvar-HOME

5.7. ProDy 1.4 Series 60

http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-heavy
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-noh
https://docs.python.org/3/library/exceptions.html#KeyError
https://matplotlib.org/faq/environment_variables_faq.html#envvar-HOME

ProDy Documentation, Release 1.10.5

• extendModel() and extendMode() functions have a new option for normalizing extended
mode(s).

• sampleModes() and traverseMode() automatically normalizes input modes.

Bugfixes:

• A bug in applyTransformation() is fixed. The function would interpret some external transfor-
mation matrices incorrectly.

• A bug in fetchPDBLigand() function is fixed.

5.7.8 1.4.2 (April 19, 2013)

Improvements:

• fetchPDB() and fetchPDBfromMirror() functions can handle partial PDB mirrors. See
pathPDBMirror() for setting a mirror path.

Changes:

• MSE74 is included in the definition of non-standard amino acids, i.e. nonstdaa75.

Bugfixes:

• Atom selection problems related to using all76 and none77 in composite selections, e.g. 'calpha and
all', is fixed by defining these keywords as Atom Flags (page 34).

• Fasta files with sequence labels using multiple pipe characters would cause C parser (and so
parseMSA()) to fail. This issue is fixed by completely disregarding pipe characters.

• Empty chain identifiers for PDB hits would cause a problem in parsing XML results file and
blastPDB() would throw an exception. This case is handled by slicing the chain identifier string.

• A problem in viewNMDinVMD() related to module imports is fixed.

• A problem with handling weights in loadEnsemble() is fixed.

5.7.9 1.4.1 (Dec 16, 2012)

New Features:

• buildSeqidMatrix() and uniqueSequences() functions are implemented for comparing se-
quences in an MSA object.

• showHeatmap(), parseHeatmap(), and writeHeatmap() functions are implemented to support
VMD plugin Heat Mapper78 file format.

• Sequence is implemented to handle individual sequence records and point to sequences in MSA
instances.

• evol occupancy (page 25) application is implemented for refined MSA quality checking purposes.

• mergeMSA() function and evol merge (page 24) application are implemented for merging Pfam MSA
to study multi-domain proteins.

Improvements:

74 http://www.pdb.org/pdb/ligand/ligandsummary.do?hetId=MSE
75 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-nonstdaa
76 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-all
77 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-none
78 http://www.ks.uiuc.edu/Research/vmd/plugins/heatmapper/

5.7. ProDy 1.4 Series 61

http://www.pdb.org/pdb/ligand/ligandsummary.do?hetId=MSE
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-nonstdaa
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-all
http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-none
http://www.ks.uiuc.edu/Research/vmd/plugins/heatmapper/

ProDy Documentation, Release 1.10.5

• refineMSA() function and evol refine (page 28) application can perform MSA refinements by remov-
ing similar sequences.

• writePDB() function takes beta and occupancy arguments to be outputted in corresponding columns.

• MSA indexing and slicing are revised and improved.

• parseMSA() is improved to handle indexing of sequences that have the same label in an MSA file,
e.g. domains repeated in a protein.

• prody anm (page 5), prody gnm (page 13), and prody pca (page 15) applications can write heatmap files
for visualization using NMWiz and Heatmapper plugins.

• Several improvements made to handling sequence labels in Pfam MSA files. Files that contain se-
quence parts with same protein UniProt ID are handled delicately.

Changes:

• ProDy will not emit a warning message when a wwPDB server is not set using wwPDBServer(), and
use the default US server.

• Indexing MSA returns Sequence instances.

• Iterating over MSA and MSAFile yields Sequence instances.

Bugfixes:

• Fixed a syntax problem that prevented running ProDy using Python 2.6.

• Fixed NMA indexing problem that was introduced in v1.4.

Normal Mode Wizard

• NMWiz can visualize heatmaps linked to structural view via Heatmapper. Clicking on the heatmap
will highlight atom or residue pairs.

• ProDy interface has the option to write and load cross-correlations.

• NMWiz can determined whether a model is an extended model. For extended models plotting mo-
bility has been improved. Only a single value per residue will be plotted, and clicking on the plot will
highlight all of the residue atoms.

5.7.10 1.4 (Dec 2, 2012)

New Features:

Python 3 Support

• ProDy has been refactored to support Python 3. Windows installers for Python 2.6, 2.7, 3.1, and 3.2
are available in Installation (page 1).

• Unit tests are compatible with Python 2.7 and 3.2, and running them with other versions gives errors
due to unavailability of some unittest79 features.

Sequence Analysis

• New applications Evol Applications (page 18) are available.

• searchPfam() and fetchPfamMSA() functions are implemented for searching and retrieving Pfam
data. See MSA Files80 for usage examples.

79 https://docs.python.org/3/library/unittest.html#module-unittest
80 http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles

5.7. ProDy 1.4 Series 62

https://docs.python.org/3/library/unittest.html#module-unittest
http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles

ProDy Documentation, Release 1.10.5

• MSAFile class, parseMSA() and writeMSA() functions are implemented for reading and writing
multiple sequence alignments. See MSA Files81 for usage examples.

• MSA class has been implemented for storing and manipulating MSAs in memory.

• calcShannonEntropy(), buildMutinfoMatrix(), and calcMSAOccupancy() functions are
implemented implemented for MSA analysis. See Evolution Analysis82 for usage examples.

• showShannonEntropy(), showMutinfoMatrix(), and showMSAOccupancy() functions are
implemented implemented for MSA analysis. See Evolution Analysis83 for usage examples.

• applyMutinfoCorr() and applyMutinfoNorm() functions are implemented for applying nor-
malization and corrections to mutual information matrices.

• calcRankorder() function is implemented for identifying highly correlated/co-evolving pairs of
residues.

Bugfix:

• Fixed selection issues involving use of x or negative numbers.

5.8 ProDy 1.3 Series

• 1.3.1 (Nov 6, 2012) (page 63)

• 1.3 (Sep 30, 2012) (page 64)

5.8.1 1.3.1 (Nov 6, 2012)

New Features:

• Added fetchPDBviaHTTP() and fetchPDBviaFTP() functions.

• Added copyFile() function to utilities.

• Added prody test command for convenient testing of ProDy package.

Improvements:

• Improved gunzip() function to handle .gz extensions and string buffers.

Changes:

• getWWPDBFTPServer() and setWWPDBFTPServer() are deprecated for removal in v1.4, use
wwPDBServer() instead.

• getPDBLocalFolder() and setPDBLocalFolder() are deprecated for removal in v1.4, use
pathPDBFolder() instead.

• getPDBMirrorPath() and setPDBMirrorPath() are deprecated for removal in v1.4, use
pathPDBMirror() instead.

• getPDBCluster() is deprecated for removal in v1.4, use listPDBCluster() instead.

• getReservedWords() is deprecated for removal in v1.4, use listReservedWords() instead.

81 http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles
82 http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis
83 http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis

5.8. ProDy 1.3 Series 63

http://prody.csb.pitt.edu/tutorials/evol_tutorial/msafiles.html#msafiles
http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis
http://prody.csb.pitt.edu/tutorials/evol_tutorial/msaanalysis.html#msa-analysis

ProDy Documentation, Release 1.10.5

• getNonstdProperties() is deprecated for removal in v1.4, use listNonstdAAProps() instead.

Bugfix:

• Fixed a bug in HierView that would cause wrong assignment of residue/chain indices to atoms
when residue or chain atoms are separated by atoms of other entities. This would also caused prob-
lems when making keyword selections, such as protein84.

• Added dummy atom check in Ensemble.setAtoms() and Trajectory.setAtoms() methods
to avoid indexing problems.

5.8.2 1.3 (Sep 30, 2012)

Improvements:

• selectmodule and its documentation are completely rewritten. Select class uses simplest possible
parser to evaluate selection strings and achieves more than 25% speed-up on average.

• Atom Selections (page 34) become more forgiving of small typos, but will issue warning mes-
sages when they are detected via SelectionWarning. These messages can be turned of using
confProDy()

• Functions used in ProDy Applications (page 4) have been refactored to allow for using them directly.
See apps for their documentation.

Bugfix:

• A problem in prody catdcd (page 9) command that was introduced when refactoring trajectory85

classes is fixed.

5.9 ProDy 1.2 Series

• 1.2.1 (Sep 6, 2012) (page 64)

• 1.2 (Aug 30, 2012) (page 65)

– Normal Mode Wizard (page 66)

5.9.1 1.2.1 (Sep 6, 2012)

If you are upgrading from ProDy v1.1, see also the below changes introduced in v1.2.

Bugfix:

• A problem in select86 module regarding Numpy numeric types is fixed. Problem would emerge on
platforms which do not offer some numeric types, e.f. np.float16.

• Fixed problems in prody anm (page 5), prody gnm (page 13), and prody fetch (page 12) related to writing
output files.

Changes:

84 http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-protein
85 http://prody.csb.pitt.edu/manual/reference/trajectory/index.html#module-prody.trajectory
86 https://docs.python.org/3/library/select.html#module-select

5.9. ProDy 1.2 Series 64

http://prody.csb.pitt.edu/manual/reference/atomic/flags.html#term-protein
http://prody.csb.pitt.edu/manual/reference/trajectory/index.html#module-prody.trajectory
https://docs.python.org/3/library/select.html#module-select

ProDy Documentation, Release 1.10.5

• The way that prody fetch (page 12) command handles files containing PDB identifiers has changed.

5.9.2 1.2 (Aug 30, 2012)

Important Changes:

Package folder prody is moved into lib folder to prevent exceptions related to importing compiled pack-
ages from the installation folder.

Some changes in Trajectory and Ensemblemethods related to linking, setting, and selecting atoms were
made to make the interface more intuitive. These changes, which may break your code, are as follows:

• AtomGroup instances can be linked to a Trajectory using Trajectory.link()method and link-
ing status of an instance can be checked using Trajectory.isLinked() medhod.

• Trajectory.setAtoms() method accepts AtomGroup and Selection instances and should be
used to select a subset of atoms. This method will not link AtomGroup instance to the trajectory and
also will not update the reference coordinates of the instance.

• Trajectory.select() and Ensemble.select() methods are removed and their functions are
overloaded to Trajectory.setAtoms() and Ensemble.setAtoms() methods, respectively.

• Trajectory.getSelection() and Ensemble.getSelection() methods are removed, use
Trajectory.getAtoms() and Ensemble.getAtoms() instead.

• Trajectory reference coordinates must be changed using Trajectory.setCoords() method.

For usage examples see Trajectory Analysis87, Trajectory Analysis II88, Frames and Atom Groups89, and
Trajectory Output90.

New Features:

• Atom Flags (page 34), that are used in Atom Selections (page 34), is implemented. See its documentation
for handy usage examples.

• sortAtoms() function is implemented.

• pickCentralConf() function is implemented to pick the conformation or the active coordinate set
that is closest to the average of coordinate sets.

• writePSF(), a simple PSF file writer, is implemented.

• glob() utility function is implemented.

• iterPDBFilenames() function is implemented, which can be used to iterate over all PDB files
stored in a local mirror of Protein Data Bank.

• findPDBFiles() function is implemented, which can be used to access PDB files in a path.

Improvements:

• HierView instances are built more efficiently. Two times speed-up is achieved by delaying instanti-
ation of Chain and Residue instances until they are needed.

• Multiple Atom Flags (page 34) can be used in Atom Selections (page 34) without using 'and' operator,
e.g. 'sidechain carbon' is the same as 'sidechain and carbon'.

• writePDB() accepts Ensemble, Conformation, and Frame instances as atoms argument.

• writePDB() function is around 25% faster.
87 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory
88 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2
89 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame
90 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj

5.9. ProDy 1.2 Series 65

http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj

ProDy Documentation, Release 1.10.5

• pickCentral() is extended to accept Atomic and Ensemble instances. Old function is now
pickCentralAtom().

• prody align (page 4) command and prody_align() function can handle non-protein atom selections
(see examples for prody align (page 4)).

• parsePDB() and writePDB() supports 100K and more atoms.

Changes:

• showOverlapTable() displays first set of modes along x axis of the plot.

• AtomGroup.setData() does not accept arrays with boolean data type, use AtomGroup.
setFlags() instead.

• writePDB() function argument model is changed to csets that indicates the coordinate set index of
atoms argument.

• PackageLogger.timing() does not return elapsed time, only logs this information.

• PackageLogger.startLogfile() is deprecated for removal in v1.3, use PackageLogger.
start() instead.

• PackageLogger.closeLogfile() is deprecated for removal in v1.3, use PackageLogger.
close() instead.

• from prody.utilities import * will not work anymore due to potential name conflicts with
Python standard library functions. Import required functions explicitly.

• writePDB() appends .pdb extension to filename when it is not present

• prody select (page 17) command positional argument order is changed to allow for handling multiple
PDBs at a time. Old older will be supported until v1.4, but a warning message will be issued.

• select argument in alignCoordsets() is removed, make selection outside of the function instead.

Deprecations:

• AtomGroup.getHeteros() method has been deprecated for removal in v1.3, use
getFlags('hetatm') instead.

• AtomMap.getMappedFlags() and AtomMap.getDummyFlags() methods have been deprecated
for removal in v1.3, use getFlags('mapped') and getFlags('dummy') instead.

• getVerbosity() and setVerbosity() are deprecated for removal in v1.3, use confProDy()
instead which save changes permanently.

• NMA.getModes() and ModeSet.getModes() methods are deprecated for removal in v1.3, use
list(), e.g. list(model), instead.

Bugfixes:

• Fixed a bug in prody contacts (page 10) command that arose problems when when selecting a subset
of the target atoms.

Normal Mode Wizard

Improvements:

• ProDy Interface shows the size of the trajectory output file for PCA calculations.

• Mode Graphics Options allows for copying arrows settings from one mode to another.

• Color scale method and midpoint for protein coloring based on mobility and bfactors can be adjusted
from Protein Graphics Options panel.

5.9. ProDy 1.2 Series 66

ProDy Documentation, Release 1.10.5

5.10 ProDy 1.1 Series

• 1.1 (June 1, 2012) (page 67)

– Normal Mode Wizard (page 68)

5.10.1 1.1 (June 1, 2012)

New Features:

• iterFragments() function is added.

• findNeighbors() function is added.

• calcMSF() and calcRMSF() functions are added.

• wrapAtoms() functions is added.

• extendMode() and extendVector() functions are added.

• prody contacts (page 10) command is added.

Improvements:

• moveAtoms() function is improved to move atoms to a specified location.

• DCDFile and parseDCD() take astype keyword argument for automatic type recasting for coordinate
arrays. This option can be used to convert 32-bit coordinate arrays to 64-bit automatically for higher
precision calculations.

• Commands prody anm (page 5), prody gnm (page 13), and prody pca (page 15) can extend a coarse
grained model to backbone or all atoms of the residues. See their documentation pages.

Changes:

• Color scale used by showOverlapTable() is normalized by default.

• tools module is depracated for removal, use utilities instead.

• array argument in moveAtoms() is replaced with by keyword argument.

• which argument in AtomGroup.copy() method is deprecated for removal in version 1.2.

• DCDFile does not log information for most common type of DCD file, i.e. 32-bit CHARMM format.

• Trajectory.getNextIndex() method is deprecated for removal in v1.2, use nextIndex() in-
stead.

Bugfixes:

• Fixed several problems in iterNeighbors() function and Contacts class that were introduced
after transition to new KDTree interface.

• Fixed a problem in setting selection strings of fragments identified using findFragments().

• Fixed a problem in calcCenter() related to weighted center calculation.

• Fixed a problem of in copying AtomMap instances, which would emerge when bond information was
present in unusual mappings, such as when atom orders are changed or an atom is present multiple
times in the mapping.

5.10. ProDy 1.1 Series 67

ProDy Documentation, Release 1.10.5

Normal Mode Wizard

Improvements:

• Mode scaling options are improved.

• Options added for extending coarse grained NMA models to residue backbone or all atoms.

5.11 ProDy 1.0 Series

• 1.0.4 (May 2, 2012) (page 68)

• 1.0.3 (May 1, 2012) (page 68)

• 1.0.2 (May 1, 2012) (page 69)

• 1.0.1 (Apr 6, 2012) (page 70)

• 1.0 (Mar 7, 2012) (page 71)

5.11.1 1.0.4 (May 2, 2012)

Bugfixes:

• Fixed a problem in calcPhi() function that raised a name error.

• Fixed a problem in KDTree.getDistances() method that raised a name error when unitcell is
provided.

• Fixed a problem in buildDistMatrix() and calcDistance() functions causing miscalculations
when unitcell is given.

• Revised KDTree methods dealing with to handle special cases where unitcell might have some di-
mensions zero.

Changes:

• buildKDTree() method is removed, earlier than planned due to unexpected bugfix releases.

5.11.2 1.0.3 (May 1, 2012)

Bugfixes:

• Fixed kdtree91 import problem.

New Features:

• buildDistMatrix() function that can take periodic boundary conditions is implemented.

Improvements:

• calcDistance() function is improved to take periodic boundary conditions into account when
provided by the users.

91 http://prody.csb.pitt.edu/manual/reference/kdtree/index.html#module-prody.kdtree

5.11. ProDy 1.0 Series 68

http://prody.csb.pitt.edu/manual/reference/kdtree/index.html#module-prody.kdtree

ProDy Documentation, Release 1.10.5

5.11.3 1.0.2 (May 1, 2012)

New Features:

• Methods to deal with connected subsets of atoms are implemented, see AtomGroup.
iterFragments() and AtomGroup.numFragments().

• pickCentral() method is implemented for picking the atom that is closest to the centroid of a
group or subset of atoms.

• ProDy configuration option auto_secondary is implemented to allow for parsing and assigning sec-
ondary structure information from PDB file header data automatically. See assignSecstr() and
confProDy() for usage details.

• prody align makes use of select when aligning multiple structures. See usage examples: prody align
(page 4)

• printRMSD() function that prints minimum, maximum, and mean RMSD values when comparing
multiple coordinate sets is implemented.

• findFragments() function that identifies fragments in atom subsets, e.g. Selection, is imple-
mented.

• A new KDTree interface with coherent method names and capability to handle periodic boundary
conditions is implemented.

Improvements:

• Performance improvements made in saveAtoms() and loadAtoms().

• sliceMode(), sliceModel(), sliceVector(), and reduceModel() functions accept
Selection instances as well as selection strings. In repeated use of this function, if selections are
already made out of the function, considerable speed-ups are achieved when selection is passed in-
stead of selection string.

• Fragment iteration (AtomGroup.iterFragments()) is improved to yield items faster.

Changes:

• There is a change in the behavior of addition operation on instances of AtomGroup. When operands
do not have same number of coordinate sets, the result will have one coordinate set that is concatena-
tion of the active coordinate sets of operands.

• buildKDTree() function is deprecated for removal, use the new KDTree class instead.

Bugfixes:

• A problem in building hierarchical views when making selections using resindex, chindex, and segindex
keywords is fixed.

• A problem in Chain and Residue selection strings that would emerge when a HierView is build
using a selection is fixed.

• A problem with copying AtomGroup instances whose coordinates are not set is fixed.

• AtomGroup fragment detection algorithm is rewritten to avoid the problem of reaching maximum
recursion depth for large molecules with the old recursive algorithm.

• A problem with picking central atom of AtomGroup instances in pickCentral() function is fixed.

• A problem in Select class that caused exceptions when evaluating complex macro definitions is
fixed.

5.11. ProDy 1.0 Series 69

ProDy Documentation, Release 1.10.5

• Fixed a problem in handling multiple trajectory files. The problem would emerge when a file was
added (addFile()) to a Trajectory after atoms were set (setAtoms()). Newly added file would
not be associated with the atoms and coordinates parsed from this file would not be set for the
AtomGroup instance.

5.11.4 1.0.1 (Apr 6, 2012)

New Features:

• ProDy can be configured to automatically check for updates on a regular basis, see checkUpdates()
and confProDy() functions for details.

• alignPDBEnsemble() function is implemented to align PDB files using transformations calculated
in ensemble analysis. See usage example in Homologous Proteins92 example.

• PDBConformation.getTransformation() is implemented to return the transformation that was
used to superpose conformation onto reference coordinates. This transformation can be used to su-
perpose the original PDB file onto the reference PDB file.

• Amino acid sequences with regular expressions can be used to make atom selections, e.g. 'sequence
"C..C"'. See Atom Selections (page 34) for usage details.

• calcCrossProjection() function is implemented.

Improvements:

• Select class raises a SelectionError when potential typos are detected in a selection string, e.g.
'chain AB' is a grammatically correct selection string that will return None since no atoms have
chain identifier 'AB'. In such cases, an exception noting that values exceed maximum number of
characters is raised.

• prody align command accepts percent sequence identity and overlap parameters used when
matching chains from given multiple structures.

• When using prody align command to align multiple structure, all models in NMR structures are
aligned onto the reference structure.

• prody catdcd command accepts --align SELSTR argument that can be used to align frames
when concatenating files.

• showProjection() and showCrossProjection() functions are improved to evaluate list of
markers, color, labels, and texts. See usage example in Plotting93.

• Trajectory instances can be used for calculating and plotting projections us-
ing calcProjection(), showProjection(), calcCrossProjection(), and
showCrossProjection() functions.

Changes:

• Phosphorylated amino acids, phosphothreonine (TPO), O-phosphotyrosine (PTR), and phosphoser-
ine (SEP), are recognized as acidic protein residues. This prevents having breaks in protein chains
which contains phosphorylated residues. See Atom Selections (page 34) for definitions of protein and
acidic keywords.

• Hit dictionaries from PDBBlastRecord will use percent_overlap instead of percent_coverage. Older
key will be removed in v1.1.

• Transformation.get4x4Matrix() method is deprecated for removal in v1.1, use
Transformation.getMatrix() method instead.

92 http://prody.csb.pitt.edu/tutorials/ensemble_analysis/blast.html#pca-blast
93 http://prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_plotting.html#pca-xray-plotting

5.11. ProDy 1.0 Series 70

http://prody.csb.pitt.edu/tutorials/ensemble_analysis/blast.html#pca-blast
http://prody.csb.pitt.edu/tutorials/ensemble_analysis/xray_plotting.html#pca-xray-plotting

ProDy Documentation, Release 1.10.5

Bugfixes:

• A bug in some ProDy Applications (page 4) is fixed. The bug would emerge when invalid arguments
were passed to effected commands and throw an unrelated exception hiding the error message related
to the arguments.

• A bug in 'bonded to ...' is fixed that emerged when '...' selected nothing.

• A bug in 'not' selections using . operator is fixed.

5.11.5 1.0 (Mar 7, 2012)

Improvements:

• ANM.buildHessian() method is not using a KDTree by default, since with some code opti-
mization the version not using KDTree is running faster. Same optimization has gone into GNM.
buildKirchhoff() too, but for Kirchoff matrix, version using KDTree is faster and is the default.
Both methods have kdtree argument to choose whether to use it or not.

• prody script is updated. Importing Prody and Numpy libraries are avoided. Script responses to help
queries faster. See ProDy Applications (page 4) for script usage details.

• Added bonded to ... selection method that expands a selection to immediately bound atoms. See
Atom Selections (page 34) for its description.

• fetchPDBLigand() parses bond data from the XML file.

• fetchPDBLigand() can optionally save compressed XML files into ProDy package folder so that
frequent access to same files will be more rapid. See confProDy() function for setting this option.

• Select class is revised. All exceptions are handled delicately to increase the stability of the class.

• Distance based atom selection is 10 to 15% faster for atom groups with more than 5K atoms.

• Added uncompressed file saving option to prody blast (page 8) command.

Changes:

• All deprecated method and functions scheduled for removal are removed.

• getEigenvector() and getEigenvalue() methods are deprecated for removal in v1.1, use
Mode.getEigvec() and Mode.getEigval() instead.

• getEigenvectors() and getEigenvalues() methods are deprecated for removal in v1.1, use
NMA.getEigvecs() and NMA.getEigvals() instead.

• Mode.getCovariance() and ModeSet.getCovariance() methods are deprecated for removal
in v1.1, use calcCovariance() method instead.

• Mode.getCollectivity() method is removed, use calcCollectivity() function instead.

• Mode.getFractOfVariance() method is removed, use the new calcFractVariance() func-
tion instead.

• Mode.getSqFlucts() method is removed, use calcSqFlucts() function instead.

• Renamed showFractOfVar() function as showFractVars() function instead.

• Removed calcCumOverlapArray(), use calcCumulOverlap() with array=True argument in-
stead.

• Renamed extrapolateModel() as extendModel().

5.11. ProDy 1.0 Series 71

ProDy Documentation, Release 1.10.5

• The relation between AtomGroup, Trajectory, and Frame instances have changed. See Trajectory
Analysis II94 and Trajectory Output95, and Frames and Atom Groups96 usage examples.

• AtomGroup cannot be deformed by direct addition with a vector instance.

• Unmapped atoms in AtomMap instances are called dummies. AtomMap.numUnmapped() method,
for example, is renamed as AtomMap.numDummies().

• fetchPDBLigand() accepts only filename (instead of save and folder) argument to save an XML file.

Bugfixes:

• A problem in distance based atom selection which would could cause problems when a distance
based selection is made from a selection is fixed.

• Changed prody blast (page 8) so that when a path for downloading files are given files are not save to
local PDB folder.

5.12 ProDy 0.9 Series

• 0.9.4 (Feb 4, 2012) (page 72)

• 0.9.3 (Feb 1, 2012) (page 73)

• 0.9.2 (Jan 11, 2012) (page 74)

• 0.9.1 (Nov 9, 2011) (page 75)

• 0.9 (Nov 8, 2011) (page 75)

– Normal Mode Wizard (page 79)

5.12.1 0.9.4 (Feb 4, 2012)

Changes:

• setAtomGroup() and getAtomGroup() methods are renamed as Ensemble.setAtoms() and
Ensemble.getAtoms().

• AtomGroup class trajectory methods, i.e. AtomGroup.setTrajectory(), AtomGroup.
getTrajectory(), AtomGroup.nextFrame(), AtomGroup.nextFrame(), and AtomGroup.
gotoFrame() methods are deprecated. Version 1.0 will feature a better integration of AtomGroup
and Trajectory classes.

Bugfixes:

• Bugfixes in Bond.setACSIndex(), saveAtoms(), and HierView.getSegment().

• Bugfixes in GammaVariableCutoff and GammaStructureBased classes.

• Bugfix in calcCrossCorr() function.

• Bugfixes in Ensemble.getWeights(), showOccupancies(), DCDFile.flush().

• Bugfixes in ProDy commands prody blast (page 8), prody fetch (page 12), and prody pca (page 15).

94 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2
95 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj
96 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame

5.12. ProDy 0.9 Series 72

http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory2.html#trajectory2
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/outputtraj.html#outputtraj
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/frame.html#frame

ProDy Documentation, Release 1.10.5

• Bugfix in calcCenter() function.

5.12.2 0.9.3 (Feb 1, 2012)

New Features:

• DBRef class is implemented for storing references to sequence databases parsed from PDB header
records.

• Methods for storing coordinate set labels in AtomGroup instances are implemented:
getACSLabel(), and getACSLabel().

• calcCenter() and moveAtoms() functions are implemented for dealing with coordinate transla-
tion.

• Hierarchical view, HierView, is completely redesigned. PDB files that contain non-empty segment
name column (or when such information is parsed from a PSF file), new design delicately handles
this information to identify distinct chains and residues. This prevents merging distinct chains in
different segments but with same identifiers and residues in those with same numbers. New design
is also using ordered dictionaries collections.OrderedDict97 and lists so that chain and residue
iterations yield them in the order they are parsed from file. These improvements also bring modest
improvements in speed.

• Segment class is implemented for handling segments of atoms defined in molecular dynamics simu-
lations setup, using psfgen for example.

• Context manager methods are added to trajectory classes. A trajectory file can be opened as follows:

with Trajectory('mdm2.dcd') as traj:
for frame in traj:

calcGyradius(frame)

• Chain slicing is implemented:

p38 = parsePDB('1p38')
chA = p38['A']
res_4to10 = chA[4:11]
res_100toLAST = chA[100:]

• Some support for bonds is implemented to AtomGroup class. Bonds can be set using setBonds()
method. All bonds must be set at once. iterBonds() or iterBonds() methods can be used to
iterate over bonds in an AtomGroup or an Atom.

• parsePSF() parses bond information and sets to the atom group.

• Selection.update() method is implemented, which may be useful to update a distance based
selection after coordinate changes.

• buildKDTree() and iterNeighbors() methods are implemented for facilitating identification of
pairs of atoms that are proximal.

• iterAtoms() method is implemented to all atomic98 classes to provide uniformity for atom itera-
tions.

• calcAngle(), calcDihedral(), calcPhi(), calcPsi(), and calcOmega() methods are im-
plemented.

Improvements:

97 https://docs.python.org/3/library/collections.html#collections.OrderedDict
98 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic

5.12. ProDy 0.9 Series 73

https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic

ProDy Documentation, Release 1.10.5

• Chain.getSelstr() and Residue.getSelstr() methods are improved to include the selection
string of a Selection when they are built using one.

Changes:

• Residuemethods getNumber(), setNumber(), getName(), setName()methods are deprecated
and will be removed in v1.0.

• Chain methods getIdentifier() and setIdentifier() methods are deprecated and will be
removed in v1.0.

• Polymer attribute identifier is renamed as chid.

• Chemical attribute identifier is renamed as resname.

• getACSI() and setACSI() are renamed as getACSIndex() and setACSIndex(), respectively.

• calcRadiusOfGyration() is deprecated and will be removed in v1.0. Use calcGyradius()
instead.

Bugfixes:

• Fixed a problem in parsePDB() that caused loosing existing coordinate sets in an AtomGroup when
passed as ag argument.

• Fixed a problem with "same ... as ..." argument of Select that selected atoms when followed
by an incorrect atom selection.

• Fixed another problem with "same ... as ..." which result in selecting multiple chains when
same chain identifier is found in multiple segments or multiple residues when same residue number
is found in multiple segments.

• Improved handling of negative integers in indexing AtomGroup instances.

5.12.3 0.9.2 (Jan 11, 2012)

New Features:

• prody catdcd command is implemented for concatenating and/or slicing .dcd files. See prody
catdcd (page 9) for usage examples.

• DCDFile can be opened in write or append mode, and coordinate sets can be added using write()
method.

• getReservedWords() can be used to get a list of words that cannot be used to label user data.

• confProDy() function is added for configuring ProDy.

• ProDy can optionally backup existing files with .BAK (or another) extension instead of overwriting
them. This behavior can be activated using confProDy() function.

Improvements:

• writeDCD() file accepts AtomGroup or other Atomic instances as trajectory argument.

• prody align command can be used to align multiple PDB structures.

• prody pca command allows atom selections for DCD files that are accompanied with a PDB or PSF
file.

Changes:

• DCDFile instances, when closed, raise exception, similar to behavior of file objects in Python.

5.12. ProDy 0.9 Series 74

ProDy Documentation, Release 1.10.5

• Title of AtomGroup instances resulting from copying an Atomic instances does not start with ‘Copy
of’.

• changeVerbosity() and getVerbosityLevel() are renamed as setVerbosity() and
getVerbosity(), respectively. Old names will be removed in v1.0.

• ProDy applications (commands) module is rewritten to use new argparse99 module. See ProDy
Applications (page 4) for details of changes.

• argparse100 module is added to the package for Python versions 2.6 and older.

Bugfixes:

• Fixed problems in loadAtoms() and saveAtoms() functions.

• Bugfixes in parseDCD() and writeDCD() functions for Windows compatability.

5.12.4 0.9.1 (Nov 9, 2011)

Bug Fixes:

• Fixed problems with reading and writing configuration files.

• Fixed problem with importing nose for testing.

5.12.5 0.9 (Nov 8, 2011)

New Features:

• PDBML101 and mmCIF102 files can be retrieved using fetchPDB() function.

• getPDBLocalFolder() and setPDBLocalFolder() functions are implemented for local PDB
folder management.

• parsePDBHeader() is implemented for convenient parsing of header data from .pdb files.

• showProtein() is implemented to allow taking a quick look at protein structure.

• Chemical and Polymer classes are implemented for storing chemical and polymer component data
parsed from PDB header records.

Changes:

Warning: This release introduces numerous changes in method and function names all aim-
ing to improve the interactive usage experience. All changes are listed below. Currently these
functions and methods are present in both old and new names, so code using ProDy must
not be affected. Old function names will be removed from version 1.0, which is expected to
happen late in the first quarter of 2012.

Old function names are marked as deprecated, but ProDy will not issue any warnings until
the end of 2011. In 2012, ProDy will automatically start issuing DeprecationWarning103

upon calls using old names to remind the user of the name change.

For deprecated methods that are present in multiple classes, only the affected modules are
listed for brevity.

99 https://docs.python.org/3/library/argparse.html#module-argparse
100 https://docs.python.org/3/library/argparse.html#module-argparse
101 http://pdbml.pdb.org/
102 http://mmcif.pdb.org/

5.12. ProDy 0.9 Series 75

https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#module-argparse
http://pdbml.pdb.org/
http://mmcif.pdb.org/
https://docs.python.org/3/library/exceptions.html#DeprecationWarning

ProDy Documentation, Release 1.10.5

Note: When modifying code using ProDy to adjust the name changes, turning on
deprecation warnings may help locating all use cases of the deprecated names. See
turnonDepracationWarnings() for this purpose.

Functions:

The following function name changes are mainly to reduce the length of the name in order to
make them more suitable for interactive sessions:

Old name New name
applyBiomolecularTransformations() buildBiomolecules()
assignSecondaryStructure() assignSecstr()
scanPerturbationResponse() calcPerturbResponse()
calcCrossCorrelations() calcCrossCorr()
calcCumulativeOverlap() calcCumulOverlap()
calcCovarianceOverlap() calcCovOverlap()
showFractOfVariances() showFractVars()
showCumFractOfVariances() showCumulFractVars()
showCrossCorrelations() showCrossCorr()
showCumulativeOverlap() showCumulOverlap()
deform() deformAtoms()
calcSumOfWeights() calcOccupancies()
showSumOfWeights() showOccupancies()
trimEnsemble() trimPDBEnsemble()
getKeywordResidueNames() getKeywordResnames()
setKeywordResidueNames() setKeywordResnames()
getPairwiseAlignmentMethod() getAlignmentMethod()
setPairwiseAlignmentMethod() setAlignmentMethod()
getPairwiseMatchScore() getMatchScore()
setPairwiseMatchScore() setMatchScore()
getPairwiseMismatchScore() getMismatchScore()
setPairwiseMismatchScore() setMismatchScore()
getPairwiseGapOpeningPenalty() getGapPenalty()
setPairwiseGapOpeningPenalty() setGapPenalty()
getPairwiseGapExtensionPenalty() getGapExtPenalty()
setPairwiseGapExtensionPenalty() setGapExtPenalty()

Coordinate methods:

All getCoordinates() and setCoordinates() methods in atomic104 and ensemble105

classes are renamed as getCoords() and setCoords(), respectively.

getNumOf methods:

All method names starting with getNumOf now start with num. This change brings two advan-
tages: method names (i) are considerably shorter, and (ii) do not suggest that there might also
be corresponding set methods.

103 https://docs.python.org/3/library/exceptions.html#DeprecationWarning
104 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
105 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble

5.12. ProDy 0.9 Series 76

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble

ProDy Documentation, Release 1.10.5

Old name New name Affected modules
getNumOfAtoms() numAtoms() atomic106, ensemble107, dynamics
getNumOfChains() numChains() atomic108

getNumOfConfs() numConfs() ensemble109

getNumOfCoordsets() numCoordsets() atomic110, ensemble111

getNumOfDegOfFreedom() numDOF() dynamics
getNumOfFixed() numFixed() ensemble112

getNumOfFrames() numFrames() ensemble113

getNumOfResidues() numResidues() atomic114

getNumOfMapped() numMapped() atomic115

getNumOfModes() numModes() dynamics
getNumOfSelected() numSelected() ensemble116

getNumOfUnmapped() numUnmapped() atomic117

getName method:

getName() methods are renamed as getTitle() to avoid confusions that might arise from
changes in atomic118 method names listed below. All classes in atomic119, ensemble120, and
dynamics121 are affected from this change.

In line with this change, parsePDB() and parsePQR() name arguments are changed to title,
but name argument will also work until release 1.0.

This name change conflicted with DCDFile.getTitle() method. The conflict is resolved
in favor of the general getTitle() method. An alternative method will be implemented to
handle title strings in DCD files.

get/set methods of atomic classes:

Names of get and set methods allowing access to atomic data are all shortened as follows:

106 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
107 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
108 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
109 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
110 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
111 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
112 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
113 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
114 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
115 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
116 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
117 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
118 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
119 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
120 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
121 http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics

5.12. ProDy 0.9 Series 77

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics

ProDy Documentation, Release 1.10.5

Old name New name
getAtomNames() getNames()
getAtomTypes() getTypes()
getAltLocIndicators() getAltlocs()
getAnisoTempFactors() getAnisos()
getAnisoStdDevs() getAnistds()
getChainIdentifiers() getChains()
getElementSymbols() getElements()
getHeteroFlags() getHeteros()
getInsertionCodes() getIcodes()
getResidueNames() getResnames()
getResidueNumbers() getResnums()
getSecondaryStrs() getSecstrs()
getSegmentNames() getSegnames()
getSerialNumbers() getSerials()
getTempFactors() getBetas()

This change affects all atomic122 classes, AtomGroup, Atom, Chain, Residue, Selection
and AtomMap.

Other changes in atomic methods:

• getSelectionString() renamed as getSelstr()

Methods handling user data (which was previously called attribute) are renamed as follows:

Old name New name
getAttribute() getData()
getAttrNames() getDataLabels()
getAttrType() getDataType()
delAttribute() delData()
isAttribute() isData()
setAttribute() setData()

To be removed:

Finally, the following methods will be removed, but other suitable methods are overloaded to
perform their action:

• removed AtomGroup.getBySerialRange(), overloaded AtomGroup.
getBySerial()

• removed getProteinResidueNames(), overloaded getKeywordResnames()

• removed setProteinResidueNames(), overloaded setKeywordResnames()

Scripts:

The way ProDy scripts work has changed. See ProDy Applications (page 4) for details. Using
older scripts will start issuing deprecation warnings in 2012.

Bug Fixes:

• Bugs in execDSSP() and execSTRIDE() functions that caused exceptions when compressed files
were passed is fixed.

122 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic

5.12. ProDy 0.9 Series 78

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic

ProDy Documentation, Release 1.10.5

• A problem in scripts for PCA of DCD files is fixed.

Normal Mode Wizard

Development of NMWiz is finalized and it will not be distributed in the ProDy installation package any-
more. See Normal Mode Wizard123 pages for instructions on installing it.

5.13 ProDy 0.8 Series

• 0.8.3 (Oct 16, 2011) (page 79)

• 0.8.2 (Oct 14, 2011) (page 80)

• 0.8.1 (Sep 16, 2011) (page 80)

– Normal Mode Wizard (page 81)

• 0.8 (Aug 24, 2011) (page 81)

– Normal Mode Wizard124 (page 83)

5.13.1 0.8.3 (Oct 16, 2011)

New Features:

• Functions to read and write PQR files: parsePQR() and writePQR().

• Added PDBEnsemble.getIdentifiers() method that returns identifiers of all conformations in
the ensemble.

• ProDy tests are incorporated to the package installer. If you are using Python version 2.7, you can run
the tests by calling prody.test().

Improvements:

• blastPDB() function and PDBBlastRecord class are rewritten to use faster and more compact
code.

• New PackageLogger function is implemented to unify logging and reporting task progression.

• Improvements in PDB ensemble support functions, e.g. trimPDBEnsemble(), are made.

• Improvements in ensemble concatenations are made.

Bug Fixes:

• Bugfixes in PDBEnsemble() slicing operation. This may have affected users when slicing a PDB
ensemble for plotting projections in color for different forms of the protein.

123 http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
124 http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz

5.13. ProDy 0.8 Series 79

http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz

ProDy Documentation, Release 1.10.5

5.13.2 0.8.2 (Oct 14, 2011)

New Features:

• fetchPDBClusters(), loadPDBClusters(), and getPDBCluster() functions are imple-
mented for handling PDB sequence cluster data. These functions can be used instead of blastPDB()
function for fast access to structures of the same protein (at 95% sequence identity level) or similar
proteins.

• Perturbation response scanning method described in [CA09] (page 98) is implemented as
scanPerturbationResponse() based on the code provided by Ying Liu.

Changes:

• fetchPDBLigand() returns the URL of the XML file in the ligand data dictionary.

• Name of the ProDy configuration file in user home directory is renamed as .prodyrc (used to be
.prody).

• applyBiomolecularTransformations() and assignSecondaryStructure() functions
raise ValueError125 when the function fails to perform its action due to missing data in header
dictionary.

• fetchPDB() decompresses PDB files found in the working directory when user asks for decom-
pressed files.

• parsePDB() appends chain and subset arguments to AtomGroup() name.

• chain argument is added to PDBBlastRecord.getHits().

Improvements:

• Atom selection class Select is completely redesigned to prevent breaking of the parser when evalu-
ating invalid selection strings.

• Improved type checking in parsePDB() function.

Bug Fixes:

• Bugfixes in parseDSSP(): one emerged problems in lines indicating chain breaks, another did not
parse bridge-partners correctly. Both fixes are contributed by Kian Ho.

• Bugfix in parsePDB() function. When only header is desired (header=True, model=0), would
return a tuple containing an empty atom group and the header.

Developmental:

• Unit tests for proteins and select modules are developed.

5.13.3 0.8.1 (Sep 16, 2011)

New Features:

• fetchLigandData() is implemented for fetching ligand data from Ligand Expo.

• parsePSF() function is implemented for parsing X-PLOR format PSF files.

Changes:

• __slots__ is used in AtomGroup and Atomic classes. This change prevents user from assigning new
variables to instances of all classes derived from the base Atomic.

125 https://docs.python.org/3/library/exceptions.html#ValueError

5.13. ProDy 0.8 Series 80

https://docs.python.org/3/library/exceptions.html#ValueError

ProDy Documentation, Release 1.10.5

• pyparsing is updated to version 1.5.6.

Bug Fixes:

• A bug in AtomGroup.copy() method is fixed. When AtomGroup instance itself is copied, deep
copies of data arrays were not made.

• A bug in Select class raising exceptions when negative residue number values are present is fixed.

• Another bug in Select class misinterpreting same residue as ... statement when specific
chains are involved is fixed.

• A bug in AtomGroup.addCoordset() method duplicating coordinates when no coordinate sets are
present in the instance is fixed.

Normal Mode Wizard

Changes:

• Version number in main window is iterated.

• Mode graphics material is stored for individual modes.

• Mode scaling factor is printed when active mode or RMSD is changed.

• All selections are deleted to avoid memory leaks.

5.13.4 0.8 (Aug 24, 2011)

Note: After installing v0.8, you may need to make a small change in your existing scripts. If you are using
Ensemble class for analyzing PDB structures, rename it as PDBEnsemble. See the other changes that may
affect your work below and the class documentation for more information.

New Features:

• DCDFile is implemented for handling DCD files.

• Trajectory is implemented for handling multiple trajectory files.

• writeDCD() is implemented for writing DCD files.

• Trajectory Analysis126 example to illustrate usage of new classes for handling DCD files. Essential
Dynamics Analysis127 example is updated to use new ProDy classes.

• PCA supports Trajectory and DCDFile instances.

• Ensemble and PDBEnsemble classes can be associated with AtomGroup instances. This al-
lows selecting and evaluating coordinates of subset of atoms. See setAtomGroup(), select(),
getAtomGroup(), and getSelection() methods.

• execDSSP(), parseDSSP(), and performDSSP() functions are implemented for executing and
parsing DSSP calculations.

• execSTRIDE(), parseSTRIDE(), and performSTRIDE() functions are implemented for execut-
ing and parsing DSSP calculations.

• parsePDB() function parses atom serial numbers. Atoms can be retrieved from an AtomGroup
instance by their serial numbers using getBySerial() and getBySerialRange() methods.

126 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory
127 http://prody.csb.pitt.edu/tutorials/trajectory_analysis/eda.html#eda

5.13. ProDy 0.8 Series 81

http://prody.csb.pitt.edu/tutorials/trajectory_analysis/trajectory.html#trajectory
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/eda.html#eda
http://prody.csb.pitt.edu/tutorials/trajectory_analysis/eda.html#eda

ProDy Documentation, Release 1.10.5

• calcADPs() function can be used to calculate anisotropic displacement parameters for atoms with
anisotropic temperature factor data.

• getRMSFs() is implemented for calculating root mean square fluctuations.

• AtomGroup and Mode or Vector additions are supported. This adds a new coordinate set to the
AtomGroup instance.

• getAttrNames() is implemented for listing user set attribute names.

Improvements:

• calcProjection(), showProjection(), and showCrossProjection() functions can option-
ally calculate/display RMSD along the normal mode.

• ANM, GNM, and PCA applications can optionally write compressed ProDy data files.

• fetchPDB() function can optionally write decompressed files and force copying a file from local
mirror to target folder.

• PCA.buildCovariance() and PCA.performSVD() methods accept Numpy arrays as coordinate
sets.

• Performance of PCA.buildCovariance() method is optimized for evaluation of PDB ensembles.

• calcRMSD() and superpose() functions are optimized for speed and memory usage.

• Ensemble.getMSFs() is optimized for speed and memory usage.

• Improvements in memory operations in atomic128, ensemble129, and dynamics130 modules for
faster data (PDB/NMD) output.

• Optimizations in Select and Contacts classes.

Changes:

• Ensemble does not store conformation names. Instead, newly implemented PDBEnsemble class
stores identifiers for individual conformations (PDB IDs). This class should be used in cases where
source of individual conformations is important.

• calcProjection(), showProjection(), and showCrossProjection() function calcu-
late/display root mean square deviations, by default.

• Oxidized cysteine residue abbreviation CSO is added to the definition of protein keyword.

• getMSF() method is renamed as getMSFs().

• parseDCD() function returns Ensemble instances.

Bug Fixes:

• A bug in select module causing exceptions when regular expressions are used is fixed.

• Another bug in select module raising exception when “(not ..,” is passed is fixed.

• Various bugfixes in ensemble131 module.

• Problem in prody fetch that occurred when a file is found in a local mirror is fixed.

• Bugfix in AtomPointer.copy() method.

128 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
129 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
130 http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics
131 http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble

5.13. ProDy 0.8 Series 82

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics
http://prody.csb.pitt.edu/manual/reference/ensemble/index.html#module-prody.ensemble

ProDy Documentation, Release 1.10.5

Normal Mode Wizard132

New Features:

• NMWiz can be used to compare two structures by calculating and depicting structural changes.

• Arrow graphics is scaled based on a user specified RMSD value.

Improvements:

• NMWiz writes DCD format trajectories for PCA using ProDy. This provides significant speed up in
cases where IO rate is the bottleneck.

Changes:

• Help is provided in a text window to provide a cleaner GUI.

5.14 ProDy 0.7 Series

• 0.7.2 (Jun 21, 2011) (page 83)

• 0.7.1 (Apr 28, 2011) (page 83)

• 0.7 (Apr 4, 2011) (page 84)

– Normal Mode Wizard (page 85)

5.14.1 0.7.2 (Jun 21, 2011)

New Features:

• parseDCD() is implemented for parsing coordinate sets from DCD files.

Improvements:

• parsePDB() parses SEQRES records in header sections.

Changes:

• Major classes can be instantiated without passing a name argument.

• Default selection in NMWiz ProDy interface is changed to ensure selection only protein C𝛼 atoms.

Bug Fixes:

• A bug in writeNMD() function causing problems when writing a single mode is fixeed.

• Other bugfixes in dynamics133 module functions.

5.14.2 0.7.1 (Apr 28, 2011)

Highlights:

132 http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
133 http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics

5.14. ProDy 0.7 Series 83

http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics

ProDy Documentation, Release 1.10.5

• Atomic __getattribute__() is overloaded to interpret atomic selections following the dot oper-
ator. For example, atoms.calpha is interpreted as atoms.select('calpha'). See :ref:‘‘ for more
details.

• AtomGroup class is integrated with HierView class. Atom group instances now can be indexed
to get chains or residues and number of chains/residues can be retrieved. A hierarchical view is
generated and updated when needed. See :ref:‘‘ for more details.

New Features:

• matchAlign() is implemented for quick alignment of protein structures. See Ligand Extraction134

usage example.

• setAttribute(), getAttribute(), delAttribute(), and isAttribute() functions are im-
plemented for AtomGroup class to facilitate storing user provided atomic data. See Storing data in
AtomGroup135 example.

• saveAtoms() and loadAtoms() functions are implemented to allow for saving atomic data and
loading it This saves custom atomic attributes and much faster than parsing data from PDB files.

• calcCollectivity() function is implemented to allow for calculating collectivity of deformation
vectors.

Improvements:

• parsePDB() can optionally return biomolecule when biomol=True keyword argument is passed.

• parsePDB() can optionally make secondary structure assignments when secondary=True key-
word argument is passed.

• calcSqFlucts() function is changed to accept Vector instances, e.g. deformation vectors.

Changes:

• Changes were made in calcADPAxes() function to follow the conventions in analysis ADPs. See its
documentation.

Bug Fixes:

• A in Ensemble slicing operations is fixed. Weights are now copied to the new instances obtained by
slicing.

• Bug fixes in dynamics136 plotting functions showScaledSqFlucts(), showNormedSqFlucts(),

5.14.3 0.7 (Apr 4, 2011)

New Features:

• Regular expressions can be used in atom selections. See select module for details.

• User can define selection macros using defSelectionMacro() function. Macros are saved in
ProDy configuration and loaded in later sessions. See select module for other related functions.

• parseSparseMatrix() function is implemented for parsing matrices in sparse format. See the
usage example in Using an External Matrix137.

• deform() function is implemented for deforming coordinate sets along a normal mode or linear
combination of multiple modes.

134 http://prody.csb.pitt.edu/tutorials/structure_analysis/ligands.html#extract-ligands
135 http://prody.csb.pitt.edu/tutorials/prody_tutorial/atomgroup.html#id1
136 http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics
137 http://prody.csb.pitt.edu/tutorials/enm_analysis/external.html#external-matrix

5.14. ProDy 0.7 Series 84

http://prody.csb.pitt.edu/tutorials/structure_analysis/ligands.html#extract-ligands
http://prody.csb.pitt.edu/tutorials/prody_tutorial/atomgroup.html#id1
http://prody.csb.pitt.edu/tutorials/prody_tutorial/atomgroup.html#id1
http://prody.csb.pitt.edu/manual/reference/dynamics/index.html#module-prody.dynamics
http://prody.csb.pitt.edu/tutorials/enm_analysis/external.html#external-matrix

ProDy Documentation, Release 1.10.5

• sliceModel() function is implemented for slicing normal mode data to be used with functions
calculating atomic properties using normal modes.

Improvements:

• Atom selections using bare keyword arguments is optimized. New keyword definitions are added.
See select module for the complete list.

• A new keyword argument for calcADPAxes() allows for comparing largest axis to the second
largest one.

Changes:

• There are changes in function used to alter definitions of selection keywords. See select for details.

• assignSecondaryStructure() function assigns SS identifiers to all atoms in a residue. Residues
with no SS information specified is assigned coil conformation.

• When Ensemble and NMA classes are instantiated with an empty string, instances are called “Un-
named”.

• sliceMode(), sliceVector() and reduceModel() functions return the atom selection in addi-
tion to the sliced vector/mode/model instance.

Bug Fixes:

• Default selection for calcGNM() function is set to “calpha”.

Normal Mode Wizard

New Features:

• NMWiz supports GNM data and can use ProDy for GNM calculations.

• NMWiz can gather normal mode data from molecules loaded into VMD. This allows NMWiz to sup-
port all formats supported by VMD.

• User can write data loaded into NMWiz in NMD format.

• An Arrow Graphics option allows the user to draw arrows in both directions.

• User can select Licorice representation for the protein if model is an all atom mode.

• User can select Custom as the representation of the protein to prevent NMWiz from chancing a user
set representation.

• Trace is added as a protein backbone representation option.

Improvements:

• NMWiz remembers all adjustments on arrow graphics for all modes.

• Plotting Clear button clears only atom labels that are associated with the dataset.

• Removing a dataset removes all associated molecule objects.

• Selected atom representations are turned on based on atom index.

• Padding around interface button has been standardized to provide a uniform experience between
different platforms.

5.14. ProDy 0.7 Series 85

ProDy Documentation, Release 1.10.5

5.15 ProDy 0.6 Series

• 0.6.2 (Mar 16, 2011) (page 86)

• 0.6.1 (Mar 2, 2011) (page 86)

• 0.6 (Feb 22, 2011) (page 87)

– Normal Mode Wizard (page 88)

5.15.1 0.6.2 (Mar 16, 2011)

New Features:

• performSVD() function is implemented for faster and more memory efficient principal compoment
analysis.

• extrapolateModel() function is implemented for extrapolating a coarse-grained model to an all
atom model. See the usage example Extend a coarse-grained model138.

• plog() is implemented for enabling users to make log entries.

Improvements:

• compare functions are improved to handle insertion codes.

• HierView allows for indexing using chain identifier and residue numbers. See usage example Hier-
archical Views139.

• Chain allows for indexing using residue number and insertion code. See usage example Hierarchical
Views140.

• addCoordset() function accepts Atomic and Ensemble instances as coords argument.

• New method HierView.getAtoms() is implemented.

• AtomGroup set functions check the correctness of dimension of data arrays to prevent runtime prob-
lems.

• prody pca script is updated to use the faster PCA method that uses SVD.

Changes:

• “backbone” definition now includes the backbone hydrogen atom (Thanks to Nahren Mascarenhas
for pointing to this discrepancy in the keyword definition).

Bug Fixes:

• A bug in PCA allowed calculating covariance matrix for less than 3 coordinate sets is fixed.

• A bug in mapOntoChain() function that caused problems when mapping all atoms is fixed.

5.15.2 0.6.1 (Mar 2, 2011)

New Features:
138 http://prody.csb.pitt.edu/tutorials/enm_analysis/extend.html#extendmodel
139 http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview
140 http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview

5.15. ProDy 0.6 Series 86

http://prody.csb.pitt.edu/tutorials/enm_analysis/extend.html#extendmodel
http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview
http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview
http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview
http://prody.csb.pitt.edu/tutorials/prody_tutorial/hierview.html#hierview

ProDy Documentation, Release 1.10.5

• setWWPDBFTPServer() and getWWPDBFTPServer() functions allow user to change or learn the
WWPDB FTP server that ProDy uses to download PDB files. Default server is RCSB PDB in USA.
User can change the default server to one in Europe or Japan.

• setPDBMirrorPath() and getPDBMirrorPath() functions allow user to specify or learn the path
to a local PDB mirror. When specified, a local PDB mirror is preferred for accessing PDB files, over
downloading them from FTP servers.

• mapOntoChain() function is improved to map backbone or all atoms.

Improvements:

• WWPDB_PDBFetcher can download PDB files from different WWPDB FTP servers.

• WWPDB_PDBFetcher can also use local PDB mirrors for accessing PDB files.

Changes:

• RCSB_PDBFetcher is renamed as WWPDB_PDBFetcher.

• mapOntoChain() and matchChains() functions accept "ca" and "bb" as subset arguments.

• Definition of selection keyword “protein” is updated to include some non-standard amino acid ab-
breviations.

Bug Fixes:

• A bug in WWPDB_PDBFetcher causing exceptions when non-string items passed in a list is fixed.

• An important bug in parsePDB() is fixed. When parsing backbone or C𝛼 atoms, residue names were
not checked and this caused parsing water atoms with name "O" or calcium ions with name "CA".

5.15.3 0.6 (Feb 22, 2011)

New Features:

• Biopython module pairwise2 and packages KDTree and Blast are incorporated in ProDy package to
make installation easier. Only NumPy needs to be installed before ProDy can be used. For plotting,
Matplotlib is still required.

• Normal Mode Wizard141 is distributed with ProDy source. On Linux, if VMD is installed, ProDy in-
staller locates VMD plugins folder and installs NMWiz. On Windows, user needs to follow a separate
set of instructions (see Normal Mode Wizard142).

• Gamma class is implemented for facilitating use of force constants based on atom type, residue type, or
property. An example derived classes are GammaStructureBased and GammaVariableCutoff.

• calcTempFactors() function is implemented to calculate theoretical temperature factors.

• 5 new ProDy Applications (page 4) are implemented, and existing scripts are improved to output fig-
ures.

• getModel() method is implemented to make function development easier.

• resetTicks() function is implemented to change X and/or Y axis ticks in plots when there are
discontinuities in the plotted data.

Improvements:

• ANM.buildHessian() and GNM.buildKirchhoff() classes are improved to accept Gamma in-
stances or other custom function as gamma argument. See also Custom Gamma Functions143.

141 http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
142 http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
143 http://prody.csb.pitt.edu/tutorials/enm_analysis/gamma.html#gamma

5.15. ProDy 0.6 Series 87

http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/intro.html#nmwiz
http://prody.csb.pitt.edu/tutorials/enm_analysis/gamma.html#gamma

ProDy Documentation, Release 1.10.5

• Select class is changed to treat single word keywords differently, e.g. “backbone” or “protein”. They
are interpreted 10 times faster and in use achieve much higher speed-ups when compared to compos-
ite selections. For example, using the keyword “calpha” instead of the name CA and protein,
which returns the same selection, works >20 times faster.

• Optimizations in Select class to increase performance (Thanks to Paul McGuire for providing sev-
eral Pythonic tips and Pyparsing specific advice).

• applyBiomolecularTransformations() function is improved to handle large biomolecular as-
semblies.

• Performance optimizations in parsePDB() and other functions.

• Ensemble class accepts Atomic instances and automatically adds coordinate sets to the ensemble.

Changes:

• PDBlastRecord is renamed as PDBBlastRecord.

• NMA instances can be index using a list or tuple of integers, e.g. anm[1,3,5].

• “ca”, “bb”, and “sc” keywords are defined as short-hands for “calpha”, “backbone”, and “sidechain”,
respectively.

• Behavior of calcANM() and calcGNM() functions have changed. They return the atoms used for
calculation as well.

Bug Fixes:

• A bug in assignSecondaryStructure() function is fixed.

• Bug fixes in prody anm (page 5) and prody gnm (page 13).

• Bug fixes in showSqFlucts() and showProjection() functions.

Normal Mode Wizard

• NMWiz can be used as a graphical interface to ProDy. ANM or PCA calculations can be performed
for molecules that are loaded in VMD.

• User can set default color for arrow graphics and paths to ANM and PCA scripts.

• Optionally, NMWiz can preserve the current view in VMD display window when loading a new
dataset. Check the box in the NMWiz GUI main window.

• A bug that prevented selecting residues from plot window is fixed.

5.16 ProDy 0.5 Series

• 0.5.3 (Feb 11, 2011) (page 89)

• 0.5.2 (Jan 12, 2011) (page 89)

• 0.5.1 (Dec 31, 2010) (page 90)

• 0.5 (Dec 21, 2010) (page 90)

5.16. ProDy 0.5 Series 88

ProDy Documentation, Release 1.10.5

5.16.1 0.5.3 (Feb 11, 2011)

New Features:

• Membership, equality, and non-equality test operation are defined for all atomic144 classes. See
Operations on Selections145.

• Two functions are implemented for dealing with anisotropic temperature factors: calcADPAxes()
and buildADPMatrix().

• NMA.setEigens() and NMA.addEigenpair() methods are implemented to assist analysis of nor-
mal modes calculated using external software.

• parseNMD() is implemented for parsing NMD files.

• parseModes() is implemented for parsing normal mode data.

• parseArray() is implementing for reading numeric data, particularly normal mode data calculated
using other software for analysis using ProDy.

• The method in [BH02] to calculate overlap between covariance matrices is implemented as
calcCovOverlap() function.

• trimEnsemble() to trim Ensemble instances is implemented.

• checkUpdates() to check for ProDy updates is implemented.

Changes:

• Change in default behavior of parsePDB() function. When alternate locations exist, those indicated
by A are parsed. For parsing all alternate locations user needs to pass altloc=True argument.

• getSumOfWeights() is renamed as calcSumOfWeights().

• mapAtomsToChain() is renamed as mapOntoChain().

• ProDyStartLogFile() is renamed as startLogfile().

• ProDyCloseLogFile() is renamed as closeLogfile().

• ProDySetVerbosity() is renamed as changeVerbosity().

Improvements:

• A few bugs in ensemble and dynamics classes are fixed.

• Improvements in RCSB_PDBFetcher allow it not to miss a PDB file if it exists in the target folder.

• writeNMD() is fixed to output B-factors (Thanks to Dan Holloway for pointing it out).

5.16.2 0.5.2 (Jan 12, 2011)

Bug Fixes:

• An important fix in sampleModes() function was made (Thanks to Alberto Perez for finding the
bug and suggesting a solution).

Improvements:

• Improvements in ANM.calcModes(), GNM.calcModes(), and PCA.calcModes() methods pre-
vent Numpy/Scipy throwing an exception when more than available modes are requested by the
user.

144 http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
145 http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations

5.16. ProDy 0.5 Series 89

http://prody.csb.pitt.edu/manual/reference/atomic/index.html#module-prody.atomic
http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations

ProDy Documentation, Release 1.10.5

• Improvements in blastPDB() enable ProDy throw an exception when no internet connection is
found, and warn user when downloads fail due to restriction in network regulations (Thanks to
Serkan Apaydin for helping identify these improvements).

• New example Write PDB file146.

5.16.3 0.5.1 (Dec 31, 2010)

Changes in dependencies:

• Scipy (linear algebra module) is not required package anymore. When available it replaces Numpy
(linear algebra module) for greater flexibility and efficiency. A warning message is printed when
Scipy is not found.

• Biopython KDTree module is not required for ENM calculations (specifically for building Hessian
(ANM) or Kirchoff (GNM) matrices). When available it is used to increase the performance. A warn-
ing message is printed when KDTree is not found.

5.16.4 0.5 (Dec 21, 2010)

New Features:

• AtomPointer base class for classes pointing to atoms in an AtomGroup.

• AtomPointer instances (Selection, Residue, etc.) can be added. See Operations on Selections147 for
examples.

• Select.getIndices() and Select.getBoolArray() methods to expand the usage of Select.

• sliceVector() and sliceMode() functions.

• saveModel() and loadModel() functions for saving and loading NMA data.

• parsePDBStream() can now parse specific chains or alternate locations from a PDB file.

• alignCoordsets() is implemented to superimpose coordinate sets of an AtomGroup instance.

Bug Fixes:

• A bug in parsePDBStream() that caused unidentified errors when a model in a multiple model file
did not have the same number of atoms is fixed.

Changes:

• Iterating over a Chain instance yields Residue instances.

• Vector instantiation requires an array only. name is an optional argument.

• Functions starting with get and performing a calculations are renamed to start with calc, e.g.
getRMSD() is now calcRMSD().

5.17 ProDy 0.2 Series

146 http://prody.csb.pitt.edu/tutorials/structure_analysis/pdbfiles.html#writepdb
147 http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations

5.17. ProDy 0.2 Series 90

http://prody.csb.pitt.edu/tutorials/structure_analysis/pdbfiles.html#writepdb
http://prody.csb.pitt.edu/tutorials/prody_tutorial/selection.html#selection-operations

ProDy Documentation, Release 1.10.5

• 0.2 (Nov 16, 2010) (page 91)

– Normal Mode Wizard (page 91)

5.17.1 0.2 (Nov 16, 2010)

Important Changes:

• Single word keywords not followed by “and” logical operator are not accepted, e.g. “protein within 5
of water” will raise a SelectionError, use “protein and within 5 of water” instead.

• findMatchingChains() is renamed to matchChains().

• showOverlapMatrix() is renamed to showOverlapTable().

• Modules are reorganized.

New Features:

• Atomic for easy type checking.

• Contacts for faster intermolecular contact identification.

• Select can identify intermolecular contacts. See Intermolecular Contacts148 for an examples and
details.

• sampleModes() implemented for sampling conformations along normal modes.

Improvements:

• proteins.compare functions are improved. Now they perform sequence alignment if simple
residue number/identity based matchin does not work, or if user passes pwalign=True argument.
This impacts the speed of X-ray ensemble analysis.

• Select can cache data optionally. This results in speeds up from 2 to 50 folds depending on number
of atoms and selection operations.

• Implementation of showProjection() is completed.

Normal Mode Wizard

Release 0.2.3

• For each mode a molecule for drawing arrows and a molecule for showing animation is formed in
VMD on demand. NMWiz remembers a color associated with a mode.

• Deselecting a residue by clicking on a plot is possible.

• A bug causing incorrect parsing of NMD files from ANM server is fixed.

Release 0.2.2

• Selection string option allows user to show a subset of arrows matching a VMD selection string.
Optionally, this selection string may affect protein and animation representations.

• A bug that caused problems when over plotting modes is removed.

• A bug affecting line width changes in plots is removed.

• Selected residue representations are colored according to the color of the plot.

148 http://prody.csb.pitt.edu/tutorials/structure_analysis/contacts.html#contacts

5.17. ProDy 0.2 Series 91

http://prody.csb.pitt.edu/tutorials/structure_analysis/contacts.html#contacts

ProDy Documentation, Release 1.10.5

Release 0.2.1

• Usability improvements.

• Loading the same data file more than once is prevented.

• If a GUI window for a dataset is closed, it can be reloaded from the main window.

• A dataset and GUI can be deleted from the VMD session via the main window.

Release 0.2

• Instant documentation is improved.

• Problem with clearing selections is fixed.

• Plotting options frame is populated.

• Multiple modes can be plotted on the same canvas.

5.18 ProDy 0.1 Series

• 0.1.2 (Nov 9, 2010) (page 92)

• 0.1.1 (Nov 8, 2010) (page 92)

• 0.1 (Nov 7, 2010) (page 92)

5.18.1 0.1.2 (Nov 9, 2010)

• Important bug fixes and improvements in NMA helper and plotting functions.

• Documentation updates and improvements.

5.18.2 0.1.1 (Nov 8, 2010)

• Important bug fixes and improvements in chain comparison functions.

• Bug fixes.

• Source clean up.

• Documentation improvements.

5.18.3 0.1 (Nov 7, 2010)

• First release.

5.18. ProDy 0.1 Series 92

CHAPTER 6

About ProDy

ProDy is a free and open-source Python package for protein structural dynamics and sequence evolution
analysis. It is designed as a flexible and responsive API suitable for interactive usage and application
development.

6.1 People

ProDy is being developed in the Bahar Lab149 at the University of Pittsburgh150 with support from NIH R01
GM099738 award.

6.1.1 Development Team

Ahmet Bakan151 initiated the ProDy project, designed and developed ProDy, NMWiz, Evol, and DruGUI.

Cihan Kaya152 is currently overseeing the overall development of ProDy.

She (John) Zhang153 is currently helping on maintaining and developing ProDy.

Hongchun Li154 is currently maintaining and developing ANM and GNM servers.

James Krieger155 is currently helping develop ProDy.

Anindita Dutta156 contributed to the development of Evol, database and sequence157 modules.

Tim Lezon158 contributed to development of Rotations and Translation of Blocks and Membrane ENM.
149 http://www.ccbb.pitt.edu/faculty/bahar/
150 http://www.pitt.edu/
151 http://ahmetbakan.com
152 http://pitt.edu/~cihank
153 http://www.csb.pitt.edu/Faculty/bahar/lab.html
154 http://www.csb.pitt.edu/Faculty/bahar/lab.html
155 http://www.csb.pitt.edu/Faculty/bahar/lab.html
156 http://www.linkedin.com/pub/anindita-dutta/5a/568/a90
157 http://prody.csb.pitt.edu/manual/reference/sequence/index.html#module-prody.sequence
158 http://www.csb.pitt.edu/Faculty/Lezon/

93

http://www.ccbb.pitt.edu/faculty/bahar/
http://www.pitt.edu/
http://ahmetbakan.com
http://pitt.edu/~cihank
http://www.csb.pitt.edu/Faculty/bahar/lab.html
http://www.csb.pitt.edu/Faculty/bahar/lab.html
http://www.csb.pitt.edu/Faculty/bahar/lab.html
http://www.linkedin.com/pub/anindita-dutta/5a/568/a90
http://prody.csb.pitt.edu/manual/reference/sequence/index.html#module-prody.sequence
http://www.csb.pitt.edu/Faculty/Lezon/

ProDy Documentation, Release 1.10.5

Wenzhi Mao159 contributed to development of MSA analysis functions.

Lidio Meireles160 provided insightful comments on the design of ProDy, and contributed to the develop-
ment of ProDy Applications (page 4).

6.1.2 Contributors

In addition to the development team members, we acknowledge contributions and feedback from the fol-
lowing individuals:

Ying Liu161 provided the code for Perturbation Response Scanning method.

Kian Ho162 contributed with bug fixes and unit tests for DSSP functions.

Gökçen Eraslan163 contributed with bug fixes and development and maintenance insights.

6.2 Citing

When using ProDy or NMWiz in published work, please cite:

Bakan A, Meireles LM, Bahar I.
ProDy: Protein Dynamics Inferred from Theory and Experiments.
Bioinformatics 2011 27(11):1575-1577.

When using pairwise2 or KDTree modules in published work, please cite:

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F,
Wilczynski B, de Hoon MJ.
Biopython: freely available Python tools for computational molecular biology and
bioinformatics.
Bioinformatics 2009 25(11):1422-3.

6.3 Credits

ProDy makes use of the following great software:

pyparsing164 is used to define the sophisticated atom selection grammar. This makes every user a power
user by enabling fast access to and easy handling of atomic data via simple selection statements.

Biopython165 KDTree package and pairwise2 module, which are distributed ProDy, significantly enrich and
improve the ProDy user experience. KDtree package allows for fast distance based selections making atom
selections suitable for contact identification. pairwise2 module enables performing sequence alignment for
protein structure comparison and ensemble analysis.

ProDy requires NumPy166 for almost all major functionality including, but not limited to, storing atomic
data and performing normal mode calculations. The power and speed of NumPy makes ProDy suitable for
interactive and high-throughput structural analysis.

159 http://www.linkedin.com/pub/wenzhi-mao/2a/29a/29
160 http://www.linkedin.com/in/lidio
161 http://www.linkedin.com/pub/ying-liu/15/48b/5a9
162 https://github.com/kianho
163 http://blog.yeredusuncedernegi.com/
164 http://pyparsing.wikispaces.com
165 http://biopython.org
166 http://www.numpy.org

6.2. Citing 94

http://www.linkedin.com/pub/wenzhi-mao/2a/29a/29
http://www.linkedin.com/in/lidio
http://www.linkedin.com/pub/ying-liu/15/48b/5a9
https://github.com/kianho
http://blog.yeredusuncedernegi.com/
http://pyparsing.wikispaces.com
http://biopython.org
http://www.numpy.org

ProDy Documentation, Release 1.10.5

Finally, ProDy can benefit from SciPy167 and Matplotlib168 packages. SciPy makes ProDy normal calcula-
tions more flexible and on low memory machines possible. Matplotlib allows greatly enriches user experi-
ence by allowing plotting protein dynamics data calculated using ProDy.

6.4 Funding

Continued development of protein dynamics software ProDy is supported by NIH through R01 GM099738
award.

6.5 License

6.5.1 ProDy

ProDy is available under the MIT License169:

ProDy: A Python Package for Protein Dynamics Analysis

Copyright (C) 2010-2014 University of Pittsburgh

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

6.5.2 Biopython

Biopython170 KDTree package and pairwise2 module are distributed with the ProDy package. Biopython
is developed by The Biopython Consortium and is available under the Biopython license171:

Biopython License Agreement

Permission to use, copy, modify, and distribute this software and its

(continues on next page)

167 http://www.scipy.org
168 http://matplotlib.org
169 http://opensource.org/licenses/MIT
170 http://biopython.org
171 http://www.biopython.org/DIST/LICENSE

6.4. Funding 95

http://www.scipy.org
http://matplotlib.org
http://opensource.org/licenses/MIT
http://biopython.org
http://www.biopython.org/DIST/LICENSE

ProDy Documentation, Release 1.10.5

(continued from previous page)

documentation with or without modifications and for any purpose and
without fee is hereby granted, provided that any copyright notices
appear in all copies and that both those copyright notices and this
permission notice appear in supporting documentation, and that the
names of the contributors or copyright holders not be used in
advertising or publicity pertaining to distribution of the software
without specific prior permission.

THE CONTRIBUTORS AND COPYRIGHT HOLDERS OF THIS SOFTWARE DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

6.5.3 Pyparsing

The pyparsing172 module is distributed with the ProDy package. Pyparsing is developed by Paul T.
McGuire and is available under the MIT License173:

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6.5.4 Argparse

The argparse module174 is distributed with the ProDy package. Argparse is developed by Steven J. Bethard
and is available under the Python Software Foundation License175.

172 http://pyparsing.wikispaces.com
173 http://opensource.org/licenses/MIT
174 http://code.google.com/p/argparse/
175 http://docs.python.org/license.html

6.5. License 96

http://pyparsing.wikispaces.com
http://opensource.org/licenses/MIT
http://code.google.com/p/argparse/
http://docs.python.org/license.html

ProDy Documentation, Release 1.10.5

6.5.5 CEalign

CEalign module is distributed with ProDy. The original CE method was developed by Ilya Shindyalov and
Philip Bourne. The Python version which is used by ProDy is developed by Jason Vertrees and available
under the New BSD license:

Copyright (c) 2007, Jason Vertrees.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.5. License 97

Bibliography

[CA09] Atilgan C, Atilgan AR. Perturbation-response scanning reveals ligand entry-exit mechanisms of
ferric binding protein. PLoS Comput. Biol. 2009 5:e1000544.

98

Python Module Index

p
prody, 34

99

Index

E
environment variable

HOME, 60
PATH, 2, 32, 37
PYTHONPATH, 37

H
HOME, 60

P
PATH, 2, 32, 37
prody (module), 34
Python Enhancement Proposals

PEP 8, 42
PEP 8#imports, 42
PEP 8#whitespace-in-expressions-and-

statements, 43
PYTHONPATH, 37

100

	Installation
	Applications
	Reference Manual
	Developer’s Guide
	Release Notes
	About ProDy
	Bibliography
	Python Module Index

